精英家教网 > 高中数学 > 题目详情
8.log23•log34的值为(  )
A.3B.2C.1D.0

分析 直接利用换底公式化简求解即可.

解答 解:log23•log34=log23•$\frac{lo{g}_{2}4}{lo{g}_{2}3}$=2.
故选:B.

点评 本题考查对数运算法则的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图AB是⊙O的一条弦,过点A作圆的切线l,过点B作BC⊥l,垂足是C,BC与⊙O交于点D,已知$AC=2\sqrt{3}$,CD=2.
(Ⅰ)求⊙O的面积;
(Ⅱ)连结OD,交AB于点E,证明:点E为AB中点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图所示,正方体A′B′C′D′-ABCD中,棱长为a,求异面直线B′D′与C′A所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知f(x)=loga$\frac{2+mx}{x-2}$是奇函数(其中a>1)
(1)求m的值;
(2)判断f(x)在(2,+∞)上的单调性并证明;
(3)当x∈(r,a-2)时,f(x)的取值范围恰为(1,+∞),求a与r的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x3+3ax2+bx+a2在x=-1时有极值0.
(1)求a,b的值;                       
(2)求f(x)在[-4,0]上最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知直线l经过A,B两点,且A(2,1),$\overrightarrow{AB}$=(4,2).
(1)求直线l的方程;
(2)圆C的圆心在直线l上,并且与x轴相切于(2,0)点,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知圆$M:{({x+\sqrt{5}})^2}+{y^2}$=4,圆$N:{({x-\sqrt{5}})^2}+{y^2}$=4,动圆P与圆M外切并且与圆N内切,则动圆圆心P的轨迹方程是$\frac{x^2}{4}-{y^2}=1,({x≥2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.以椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的中心O为圆心,$\sqrt{{a}^{2}+{b}^{2}}$为半径的圆称为该椭圆的“准圆”.设椭圆C的左顶点为A,左焦点为F,上顶点为B,且满足|AB|=2,S△OAB=$\frac{\sqrt{6}}{2}$S△OFB
(1)求椭圆C及其“准圆”的方程;
(2)对于给定的椭圆C,若点P是射线y=$\sqrt{3}$x(x≥0)与椭圆C的“准圆”的交点,是否存在以P为一个顶点的“准圆”的内接矩形,使椭圆C完全落在该矩形所围成的区域内(包括边界)?若存在,请写出作图方法,并予以证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若“x<a”是“|2x-5|≤4”的必要条件,则实数a的取值范围是(  )
A.$({-∞,\frac{1}{2}})$B.$({-∞,\frac{1}{2}}]$C.$({\frac{9}{2},+∞})$D.$[{\frac{9}{2},+∞})$

查看答案和解析>>

同步练习册答案