分析 (1)已知函数f(x)=x3+3ax2+bx+a2在x=1处有极值0,即f(-1)=0,f′(-1)=0,通过求导函数,再代入列方程组,即可解得a、b的值;
(2)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可.
解答 解:(1)∵f′(x)=3x2+6ax+b,
函数f(x)=x3+3ax2+bx+a2在x=-1处有极值0,
∴f(-1)=0,f′(-1)=0
∴-1+3a-b+a2=0,3-6a+b=0.
解得a=2,b=9;
(2)由(1)得:
f(x)=x3+6x2+9x+4,
∴f′(x)=3x2+12x+9
∴由f′(x)=3x2+12x+9>0,
得x∈(-∞,-3)或(-1,+∞)
由f′(x)=3x2+12x+9<0得x∈(-3,-1),
∴函数f(x)的单调增区间为:[-4,-3),(-1,0],减区间为:(-3,-1).
∴f(x)的极小值:f(-1)=0,
极大值为:f(-3)=-27+54-27+4=4.
点评 本题考查了函数的单调性、极值问题,考查导数的应用,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{6}$ | B. | $\frac{6}{5}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3\sqrt{10}}{10}$ | B. | $\frac{\sqrt{10}}{10}$ | C. | $\frac{1}{5}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com