精英家教网 > 高中数学 > 题目详情
17.已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且$∠{F_1}P{F_2}=\frac{π}{3}$,则椭圆和双曲线离心率倒数之和的最大值为(  )
A.$\frac{4}{3}$B.$\frac{{4\sqrt{3}}}{3}$C.4D.$\frac{{4\sqrt{6}}}{3}$

分析 根据双曲线和椭圆的性质和关系,结合余弦定理即可得到结论.

解答 解:设椭圆的长半轴为a,双曲线的实半轴为a1,(a>a1),半焦距为c,
由椭圆和双曲线的定义可知,
设|PF1|=r1,|PF2|=r2,|F1F2|=2c,
椭圆和双曲线的离心率分别为e1,e2
∵∠F1PF2=$\frac{π}{3}$,则由余弦定理可得4c2=(r12+(r22-2r1r2cos$\frac{π}{3}$,①
在椭圆中,①化简为即4c2=4a2-3r1r2…②,
在双曲线中,①化简为即4c2=4a12+r1r2…③,
$\frac{1}{{{e}_{1}}^{2}}$+$\frac{3}{{{e}_{2}}^{2}}$=4,
由柯西不等式得(1+$\frac{1}{3}$)($\frac{1}{{{e}_{1}}^{2}}$+$\frac{3}{{{e}_{2}}^{2}}$)=($\frac{1}{{e}_{1}}$+$\frac{\sqrt{3}}{{e}_{2}}$×$\frac{1}{\sqrt{3}}$)2
∴$\frac{1}{{e}_{1}}$+$\frac{1}{{e}_{2}}$≤$\frac{4\sqrt{3}}{3}$
故选:B.

点评 本题主要考查椭圆和双曲线的定义和性质,利用余弦定理和柯西不等式是解决本题的关键.属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,某生态园将一块三角形地ABC的一角APQ开辟为水果园,已知角A为120°,AB,AC的长度均大于200米,现在边界AP,AQ处建围墙,在PQ处围竹篱笆.
(1)若围墙AP、AQ总长度为200米,如何可使得三角形地块APQ面积最大?
(2)已知竹篱笆长为$50\sqrt{3}$米,AP段围墙高1米,AQ段围墙高2米,造价均为每平方米100元,求围墙总造价的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.复数$\frac{{(1-i{)^2}}}{3-i}$的值是(  )
A.$-\frac{1}{4}+\frac{3}{4}i$B.$\frac{1}{4}-\frac{3}{4}i$C.$-\frac{1}{5}+\frac{3}{5}i$D.$\frac{1}{5}-\frac{3}{5}i$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow{a}$=(sin(ωx+φ),2),$\overrightarrow{b}$=(1,cos(ωx+φ)),(ω>0,0<φ<$\frac{π}{4}$),函数f(x)=($\overrightarrow{a}$+$\overrightarrow{b}$)•($\overrightarrow{a}$-$\overrightarrow{b}$)的图象过点M(1,$\frac{7}{2}$),且相邻两对称轴之间的距离为2.
(Ⅰ)求f(x)的表达式;
(Ⅱ)求f(x)在[-$\frac{2}{3}$,2]上的最大值,并求出此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.执行如图的程序框图,如果输入的x1=2000,x2=2,x3=5,则输出的b的值为(  )
A.1B.2C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.给出下列命题:
①在回归直线$\widehat{y}$=0.5x-85中,变量x=200时,变量$\widehat{y}$的值一定是15;
②根据2×2列联表中的数据计算得出X2=7.469,而P(X2>6.635)≈0.01,则有99%的把握认为两个事件有关;
③x、y均为正数,且x+y=1,则$\frac{1}{x}$+$\frac{9}{y}$的最小值为12;
④若向量$\overrightarrow{a}$=(x,y),向量$\overrightarrow{b}$=(-y,x),(xy≠0),则$\overrightarrow{a}$⊥$\overrightarrow{b}$.
其中正确的命题使②④(将正确的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图是某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图,则甲、乙两人这几场比赛得分的中位数分别是18,23.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在数列{an}中,a1=1,an+1-an=2n+1,则数列的通项an=n2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\sqrt{3}$cos2x-2cos2(x+$\frac{π}{4}$)+1.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)求f(x)在区间[0,$\frac{π}{2}$]上的最值.

查看答案和解析>>

同步练习册答案