精英家教网 > 高中数学 > 题目详情

【题目】已知动点到定点和定直线的距离之比为,设动点的轨迹为曲线

(1)求曲线的方程;

(2)过点作斜率不为0的任意一条直线与曲线交于两点,试问在轴上是否存在一点(与点不重合),使得,若存在,求出点坐标;若不存在,说明理由.

【答案】(I);(Ⅱ)存在点.

【解析】试题分析:(I)点坐标为直接找出关于的方程,这就是曲线的轨迹方程. (Ⅱ) 可知直线倾斜角互补,则,设带入式,得到的方程,求出的值.

试题解析:

(I)法1:设,则依题意有

整理得,即为曲线的方程.

法2:由椭圆第二定义知,曲线是以为焦点,以直线为相应准线,离心率为的椭圆,易得曲线的方程为.

(Ⅱ)存在.

设直线,

,即

,即

整理得

解得

综上知, 在轴上是存在点满足题意.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中, 平面的中点 上的点且上的高.

(1)证明: 平面

2)若,求三棱锥的体积;

3)在线段上是否存在这样一点使得平面?若存在,说出点的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某货轮匀速行驶在相距海里的甲、乙两地间运输货物,运输成本由燃料费用和其他费用组成.已知该货轮每小时的燃料费用与其航行速度的平方成正比(比例系数为),其他费用为每小时元,且该货轮的最大航行速度为海里/小时.

(1)请将从甲地到乙地的运输成本(元)表示为航行速度(海里/小时)的函数;

(2)要使从甲地到乙地的运输成本最少,该货轮应以多大的航行速度行驶?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解关于x的不等式x2﹣x﹣a(a﹣1)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以坐标原点为极点, 轴正半轴为极轴建立极坐标系,已知曲线的极坐标方程为: ,直线的参数方程是为参数, ).

(1)求曲线的直角坐标方程;

(2)设直线与曲线交于两点,且线段的中点为,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角三角形中,边a、b是方程x2﹣2 x+2=0的两根,角A、B满足:2sin(A+B)﹣ =0,求角C的度数,边c的长度及△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,证明:

(Ⅱ)当,且时,不等式成立,求实数的取值范围 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了了解今年高中毕业生的体能状况,从某校高中毕业班中抽取一个班进行铅球测试,成绩在8.0(精确到0.1)以上的为合格.数据分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.040.100.140.280.30 .6小组的频数是7.

I)求这次铅球测试成绩合格的人数;

II)若参加测试的学生中9人成绩优秀,现要从成绩优秀的学生中,随机选出2人参加毕业运动会,已知学生的成绩均为优秀,求两人至少有1人入选的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面内有n(n∈N*)条直线,其中任何两条不平行,任何三条不过同一点,若这n条直线把平面分成f(n)个平面区域,则f(3)=;f(n)=

查看答案和解析>>

同步练习册答案