精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以坐标原点为极点, 轴正半轴为极轴建立极坐标系,已知曲线的极坐标方程为: ,直线的参数方程是为参数, ).

(1)求曲线的直角坐标方程;

(2)设直线与曲线交于两点,且线段的中点为,求

【答案】(I) ;(II).

【解析】试题分析:(I)由极坐标与直角坐标互化的关系式 可将曲线极坐标方程化为普通方程.(II)将直线的参数方程代入取曲线的普通方程中, 中点,由的几何意义知故得到关于的方程,求出倾斜角.

试题解析:

(I)曲线,即,

于是有,

化为直角坐标方程为:

(II)方法1:

的中点为,有,所以

方法2:设,则

,

,∴,由.

方法3: 设,则由的中点得

,

,∴,知

,由.

方法4:依题意设直线,与联立得,

,因为 ,所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某出租车公司响应国家节能减排的号召,已陆续购买了140辆纯电动汽车作为运营车辆,目前我国主流纯电动汽车按续航里程数单位:公里分为3类,即类:类: 类:,该公司对这140辆车的行驶总里程进行统计,结果如下表:

类型

已行驶总里程不超过10万公里的车辆数

10

40

30

已行驶总里程超过10万公里的车辆数

20

20

20

(1)从这140辆汽车中任取一辆,求该车行驶总里程超过10万公里的概率;

(2)公司为了了解这些车的工作状况,决定抽取了14辆车进行车况分析,按表中描述的六种情况进行分层抽样,设从类车中抽取了辆车.

的值;

如果从这辆车中随机选取两辆车,求恰有一辆车行驶总里程超过10万公里的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,是等边三角形,是等腰直角三角形,,平面平面平面,点的中点,连接

(1)求证:平面

(2)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为了解高中入学新生的身高情况,从高一年级学生中按分层抽样共抽取了50名学生的身高数据,分组统计后得到了这50名学生身高的频数分布表:

(Ⅰ)在答题卡上作出这50名学生身高的频率分布直方图;

(Ⅱ)估计这50名学生身高的方差(同一组中的数据用该组区间的中点值作代表);

(Ⅲ)现从身高在这6名学生中随机抽取3名,求至少抽到1名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求函数的单调区间;

(Ⅱ)若函数存在极小值点,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点到定点和定直线的距离之比为,设动点的轨迹为曲线

(1)求曲线的方程;

(2)过点作斜率不为0的任意一条直线与曲线交于两点,试问在轴上是否存在一点(与点不重合),使得,若存在,求出点坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的半径为,圆心在第一象限,且与直线轴都相切.

Ⅰ)求圆的方程.

Ⅱ)过的直线与圆相交所得的弦长为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,若,求证:

(1)方程有实根.

(2)若﹣2<<﹣1且设x1,x2是方程f(x)=0的两个实根,则≤|x1﹣x2|<

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an},{bn}满足a1=1,且an , an+1是函数f(x)=x2﹣bnx+2n的两个零点,则b10等于(
A.24
B.32
C.48
D.64

查看答案和解析>>

同步练习册答案