分析 (1)由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.
(2)利用诱导公式以及y=Asin(ωx+φ)的图象变换规律,得出结论.
解答 解:(1)根据函数f(x)=Acos(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分图象,
可得A=2,$\frac{3}{4}•\frac{2π}{ω}$=$\frac{2π}{3}$+$\frac{π}{12}$,∴ω=2.
再根据五点法作图可得2•$\frac{2π}{3}$+φ=π,∴φ=-$\frac{π}{3}$,f(x)=2cos(2x-$\frac{π}{3}$).
令2kπ≤2x-$\frac{π}{3}$≤2kπ+π,求得kπ+$\frac{π}{6}$≤x≤kπ+$\frac{2π}{3}$,
故函数的减区间为[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$],k∈Z.
(2)∵函数y=f(x)=2cos(2x-$\frac{π}{3}$)=2sin(2x-$\frac{π}{3}$+$\frac{π}{2}$)=2sin(2x+$\frac{π}{6}$),
把函数y=f(x)=2cos(2x-$\frac{π}{3}$)=2sin(2x+$\frac{π}{6}$)的图象向右平移$\frac{5π}{12}$π个单位,
得到函数y=2sin[2(x-$\frac{5π}{12}$)+$\frac{π}{6}$]=2sin(2x-$\frac{2π}{3}$)的图象.
点评 本题主要考查利用y=Asin(ωx+φ)的图象特征,由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值;诱导公式以及y=Asin(ωx+φ)的图象变换规律,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 圆 | B. | 双曲线 | C. | 抛物线 | D. | 椭圆 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -3 | B. | $-\frac{1}{3}$ | C. | $\frac{1}{3}$ | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com