精英家教网 > 高中数学 > 题目详情
3.已知α∈($\frac{π}{2}$,π),且sinα=$\frac{1}{3}$.
(1)求sin2α的值;
(2)若sin(α+β)=-$\frac{3}{5}$,β∈(0,$\frac{π}{2}$),求sinβ的值.

分析 (1)利用同角三角函数的基本关系,三角函数在各个象限中的符号,求得cosα的值,再利用二倍角的正弦公式求得 sin2α的值.
(2)先确定α+β∈α∈(π,$\frac{3π}{2}$),可得 cos(α+β)的值,再根据sinβ=sin[(α+β)-α],利用两角差的正弦公式求得结果.

解答 解:(1)∵α∈($\frac{π}{2}$,π),且sinα=$\frac{1}{3}$,∴cosα=-$\sqrt{{1-sin}^{2}α}$=-$\frac{2\sqrt{2}}{3}$,
∴sin2α=2sinαcosα=2•$\frac{1}{3}•(-\frac{2\sqrt{2}}{3})$=-$\frac{4\sqrt{2}}{9}$.
(2)∵sin(α+β)=-$\frac{3}{5}$,β∈(0,$\frac{π}{2}$),α∈($\frac{π}{2}$,π),∴α+β∈α∈(π,$\frac{3π}{2}$),
∴cos(α+β)=-$\sqrt{{1-sin}^{2}(α+β)}$=-$\frac{4}{5}$,
∴sinβ=sin[(α+β)-α]=sin(α+β)cosα-cos(α+β)sinα=-$\frac{3}{5}•(-\frac{2\sqrt{2}}{3})$-(-$\frac{4}{5}$)•$\frac{1}{3}$=$\frac{6\sqrt{2}+4}{15}$.

点评 本题主要考查同角三角函数的基本关系,三角函数在各个象限中的符号,二倍角的正弦公式,以及两角和差的正弦公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.在等差数列{an}中,d=1,S98=137,则a2+a4+a6+…+a98=93.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=msinx+ncosx,且$f(\frac{π}{4})$是它的最大值,(其中m,n为常数且mn≠0),给出下列命题:
①$f(x+\frac{π}{4})$为偶函数;
②函数f(x)的图象关于点$(\frac{7π}{4},0)$对称;
③$f(-\frac{3π}{4})$是函数f(x)的最小值;
④记函数f(x)的图象在y右侧与直线$y=\frac{m}{2}$的交点按横坐标从小到大依次记为P1,P2,P3,P4,…,则|P2P4|=π;
⑤$\frac{n}{m}=1$.
其中真命题的有几个?(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)计算:$\frac{{lg\sqrt{27}+lg8-lo{g_4}8}}{{\frac{1}{2}lg0.3+lg2}}$;
(2)f(x)满足f(x+1)+f(x-1)=x2-4x,试求f(x
)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=Acos(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,其中A(-$\frac{π}{12}$,0),B($\frac{2π}{3}$,-2).
(1)求函数f(x)的单调增区间;
(2)如果由函数y=f(x)的图象经过平移得到函数y=2sin(2x-$\frac{2π}{3}$)的图象?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=x•lnx,则f'(1)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知f(x)在R上是奇函数,且满足f(x+5)=-f(x),当x∈(0,5)时,f(x)=x2-x,则f(2016)=(  )
A.-12B.-16C.-20D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在等差数列{an}中,已知a5=10,a12=31,求a1,d,a20,an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.不等式$\frac{1}{x}$<$\frac{1}{3}$的解集是(  )
A.(-∞,3)B.(3,+∞)C.(-∞,0)∪(3,+∞)D.(0,3)

查看答案和解析>>

同步练习册答案