精英家教网 > 高中数学 > 题目详情
18.用定积分几何意义求${∫}_{0}^{5}$2(x-2)dx的值.

分析 根据定积分几何意义转化为求对应曲线围成的面积即可.

解答 解:∵当x>2时,2(x-2)>0,当xS△<2时,2(x-2)<0,
∴${∫}_{0}^{5}$2(x-2)dx的几何意义是由曲线y=2(x-2),直线x=0,x=5围成的封闭图形的面积之差,
如图:
则A(5,6),B(2,0),C(0,-4),
故:${∫}_{0}^{5}$2(x-2)dx=S△ABD-S△OBC=$\frac{1}{2}×3×6-\frac{1}{2}×2×4=9-4=5$.

点评 本题主要考查定积分、定积分的几何意义、三角形的面积等基础知识,考查考查数形结合思想.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.函数$f(x)=\left\{\begin{array}{l}{x^2}-sinx+1,x>0\\{x^2}-2x-4,x\;≤\;0\end{array}\right.$的零点个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知O1,O2,O3分别是正方体ABCD-A1B1C1D1的三个面A1B1C1D1,CC1D1D,BCC1B1的中点,求异面直线AO1与O2O3所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.以直角坐标系的原点O为极点,x轴的正半轴为极轴,点A的极坐标是(2,0),点C的直角坐标是(0,3),直线l经过点C,且倾斜角是$\frac{π}{4}$,以点A为圆心的圆经过坐标原点O.
(1)求直线l的参数方程和⊙A的极坐标方程;
(2)若点M∈l,点M∈⊙A,求线段MN的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.质地均匀的一个转盘,从圆心开始作四个半径,将圆盘分成A,B,C,D四份,它们所对的圆心角依次为45°,60°,120°,135°,端点在圆心的指针可以绕圆心转动,某人进行游戏,规则是随机转动指针,待其自行停下,指针停在A,B,C,D区域可分别得到4,3,2,1分,设指针转动后停在任何一个地方是等可能的,指针停在分界线上时,按高分计算.
(1)求转动两次后,得分的和为4的概率;
(2)设转动两次得分的和为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.试求圆心在点(1,-1)上,并且经过圆上一点A(-3,-4)的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在△ABC中,已知∠ABC=45°,O在AB上,且OB=OC=$\frac{2}{3}$AB,又PO⊥平面ABC,DA∥PO,DA=AO=$\frac{1}{2}$PO.
(Ⅰ)求证:PD⊥平面COD;
(Ⅱ)求二面角B-DC-O的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=lnx,g(x)=ax2-bx(a≠0).
(Ⅰ)当b=0时,求函数h(x)=f(x)-g(x)的单调区间;
(Ⅱ)当b=1时,回答下面两个问题:
(i)若函数y=f(x)与函数y=g(x)的图象在公共点P处有相同的切线.求实数a的值;
(ii)若函数y=f(x)与函数y=g(x)的图象有两个不同的交点M,N.过线段MN的中点作x轴的垂线,分别与f(x),g(x)的图象交于S,T两点.以S为切点作f(x)的切l1,以T为切点作g(x)的切线l2,是否存在实数a,使得l1∥l2,若存在.求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求(1+x)3+(1+x)4+…+(1+x)16的展开式中x3项的系数.(用两种解法)

查看答案和解析>>

同步练习册答案