13£®ÖʵؾùÔȵÄÒ»¸öתÅÌ£¬´ÓÔ²ÐÄ¿ªÊ¼×÷Ëĸö°ë¾¶£¬½«Ô²ÅÌ·Ö³ÉA£¬B£¬C£¬DËÄ·Ý£¬ËüÃÇËù¶ÔµÄÔ²ÐĽÇÒÀ´ÎΪ45¡ã£¬60¡ã£¬120¡ã£¬135¡ã£¬¶ËµãÔÚÔ²ÐĵÄÖ¸Õë¿ÉÒÔÈÆÔ²ÐÄת¶¯£¬Ä³È˽øÐÐÓÎÏ·£¬¹æÔòÊÇËæ»úת¶¯Ö¸Õ룬´ýÆä×ÔÐÐͣϣ¬Ö¸ÕëÍ£ÔÚA£¬B£¬C£¬DÇøÓò¿É·Ö±ðµÃµ½4£¬3£¬2£¬1·Ö£¬ÉèÖ¸Õëת¶¯ºóÍ£ÔÚÈκÎÒ»¸öµØ·½ÊǵȿÉÄܵģ¬Ö¸ÕëÍ£ÔÚ·Ö½çÏßÉÏʱ£¬°´¸ß·Ö¼ÆË㣮
£¨1£©Çóת¶¯Á½´Îºó£¬µÃ·ÖµÄºÍΪ4µÄ¸ÅÂÊ£»
£¨2£©Éèת¶¯Á½´ÎµÃ·ÖµÄºÍΪ¦Î£¬Çó¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®

·ÖÎö È·¶¨Ê¼þÖ¸ÕëÍ£ÔÚA£¬B£¬C£¬DÇøÓòµÄʼþΪA£¬B£¬C£¬D£¬Çó³öP£¨A£©=$\frac{1}{8}$£¬P£¨B£©=$\frac{1}{6}$£¬P£¨C£©=$\frac{1}{3}$£¬P£¨D£©=$\frac{3}{8}$£¬
£¨1£©×ª¶¯Á½´Îºó£¬µÃ·ÖµÄºÍΪ4µÄʼþ£º2´Î¶¼µÃ2·Ö£¬Ò»´Îµ±1·Ö£¬Ò»´ÎµÄ2·Ö£¬¸ù¾Ý¸ÅÂʹ«Ê½Çó½â¼´¿É£®
£¨2£©È·¶¨Ëæ»ú±äÁ¿¿ÉÄܵÄÖµ¦Î=2£¬3£¬4£¬5£¬6£¬7£¬8£¬¸ù¾Ý×ܵ÷ÖÇé¿ö£¬ÅжÏÿ´ÎµÄµÃ·ÖÇé¿ö£¬ÀûÓöÀÁ¢Ê¼þͬʱ·¢ÉúµÄ¸ÅÂʹ«Ê½Çó½âÏàÓ¦µÄ¸ÅÂÊ£¬
Áгö·Ö²¼ÁУ¬Çó½âÊýѧÆÚÍû£®

½â´ð ½â£ºÉèÖ¸ÕëÍ£ÔÚA£¬B£¬C£¬DÇøÓòµÄʼþΪA£¬B£¬C£¬D
¡ß½«Ô²ÅÌ·Ö³ÉA£¬B£¬C£¬DËÄ·Ý£¬ËüÃÇËù¶ÔµÄÔ²ÐĽÇÒÀ´ÎΪ45¡ã£¬60¡ã£¬120¡ã£¬135¡ã£¬
¡àP£¨A£©=$\frac{1}{8}$£¬P£¨B£©=$\frac{1}{6}$£¬P£¨C£©=$\frac{1}{3}$£¬P£¨D£©=$\frac{3}{8}$£¬
¡ßÖ¸ÕëÍ£ÔÚA£¬B£¬C£¬DÇøÓò¿É·Ö±ðµÃµ½4£¬3£¬2£¬1·Ö£¬
¡à3+1=4£¬2+2=4
£¨1£©×ª¶¯Á½´Îºó£¬µÃ·ÖµÄºÍΪ4µÄ¸ÅÂÊ£º2¡Á$\frac{1}{6}$¡Á$\frac{3}{8}$+$\frac{1}{3}¡Á\frac{1}{3}$=$\frac{17}{72}$£¬
£¨2£©¦Î=2£¬3£¬4£¬5£¬6£¬7£¬8
P£¨¦Î=2£©=$\frac{3}{8}$¡Á$\frac{3}{8}$P£¨¦Î=3£©=2¡Á$\frac{1}{3}$¡Á$\frac{3}{8}$=$\frac{1}{4}$£¬
P£¨¦Î=4£©=$\frac{1}{3}$¡Á$\frac{1}{3}$+$\frac{1}{6}$¡Á$\frac{3}{8}$$+\frac{3}{8}$¡Á$\frac{1}{6}$=$\frac{17}{72}$£¬
P£¨¦Î=5£©=2¡Á$\frac{1}{8}$¡Á$\frac{3}{8}$+2¡Á$\frac{1}{6}$¡Á$\frac{1}{3}$=$\frac{59}{288}$£¬
P£¨¦Î=6£©=$\frac{1}{6}$¡Á$\frac{1}{6}$+2¡Á$\frac{1}{8}$¡Á$\frac{1}{3}$=$\frac{1}{9}$£¬
P£¨¦Î=7£©=2¡Á$\frac{1}{8}$¡Á$\frac{1}{6}$=$\frac{1}{24}$£¬
P£¨¦Î=8£©=$\frac{1}{8}$¡Á$\frac{1}{8}$=$\frac{1}{64}$£¬

 ¦Î 2 3 4 5 6 7 8
 P $\frac{9}{64}$ $\frac{1}{4}$ $\frac{17}{72}$ $\frac{59}{288}$ $\frac{1}{9}$ $\frac{1}{24}$ $\frac{1}{64}$
ÊýѧÆÚÍû£ºE¦Î=2¡Á$\frac{9}{64}$$+3¡Á\frac{1}{4}$$+4¡Á\frac{17}{72}$$+5¡Á\frac{59}{288}$$+6¡Á\frac{1}{9}$$+7¡Á\frac{1}{24}$$+8¡Á\frac{1}{64}$=$\frac{1186}{288}$¡Ö4.1£®

µãÆÀ ±¾Ì⿼²éÁ˼¸ºÎ¸ÅÂÊ£¬¹Åµä¸ÅÂʵÄÇó½â£¬×¢Òâ·ÖÀ࣬ÅжÏÇó½âÿ¸öËæ»ú±äÁ¿µÄ¸ÅÂÊ£¬Áгö·Ö²¼ÁУ¬¼ÆËã½ÏÂé·³£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÒÑÖª£¨x+$\frac{1}{x}$-2£©9£¬Õ¹¿ªÊ½x3µÄϵÊýΪ18564£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÔڵȱÈÊýÁÐ{an}ÖУ¬ÒÑÖª¶ÔÈÎÒâµÄÕýÕûÊýn£¬a1+a2+¡­+an=2n-1£¬ÇóÊýÁÐ{an2}µÄǰnÏîºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®º¯Êýy=4sinxcosx-6cos2xµÄ×î´óÖµÊÇ$\sqrt{13}$-3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬ÒÑ֪ƽÐÐËıßÐÎABCDÓëÖ±½ÇÌÝÐÎABEFËùÔ򵀮½Ã滥Ïà´¹Ö±£¬ÆäÖÐBE¡ÎAF£¬AB¡ÍAF£¬AB=BE=$\frac{1}{2}$AF£¬BC=$\sqrt{2}$AB£¬¡ÏCBA=$\frac{¦Ð}{4}$£¬PΪDFµÄÖе㣮
£¨1£©ÇóÖ¤£ºPE¡ÎÆ½ÃæABCD£»
£¨2£©ÇóÆ½ÃæDEFÓëÆ½ÃæABCDËù³É½Ç£¨Èñ½Ç£©µÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Óö¨»ý·Ö¼¸ºÎÒâÒåÇó${¡Ò}_{0}^{5}$2£¨x-2£©dxµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Èçͼ£¬ABΪԲOµÄÖ±¾¶£¬EÊÇÔ²OÉϲ»Í¬ÓÚA£¬BµÄ¶¯µã£¬ËıßÐÎABCD Îª¾ØÐΣ¬ÇÒAB=2£¬AD=1£¬Æ½ÃæABCD¡ÍÆ½ÃæABE£®
£¨1£©ÇóÖ¤£ºBE¡ÍÆ½ÃæDAE£»
£¨2£©µ±µãEÔÚ$\widehat{AB}$µÄʲôλÖÃʱ£¬ËÄÀâ×¶E-ABCDµÄÌå»ýΪ$\frac{\sqrt{3}}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èçͼ£¬ÔÚËÄÀâ×¶P-ABCDÖУ¬µ×ÃæABCDÊÇÕý·½ÐΣ¬Æ½ÃæPAD¡ÍÆ½ÃæABCD£¬PA=PD=$\sqrt{2}$£¬ÇÒPA¡ÍPD£¬EÊÇÏß¶ÎADµÄÖе㣮
£¨¢ñ£©ÊÔÔÚÏß¶ÎABÉÏÕÒÒ»µãF£¬Ê¹CF¡ÍÆ½ÃæPBE£¬²¢ËµÃ÷ÀíÓÉ£»
£¨¢ò£©ÉèGΪÏß¶ÎPCÖе㣬ÔÚ£¨¢ñ£©µÄÌõ¼þÏ£¬ÇóÈýÀâ×¶P-EFGµÄÌå»ý£®£¨×¶ÌåÌå»ý¹«Ê½£ºV=$\frac{1}{3}$Sh£¬ÆäÖÐSΪµØÃæÃæ»ý£¬hΪ¸ß£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®Ä³ÀºÇòÔ˶¯Ô±Í¶ÀºÃüÖеĸÅÂÊΪ0.7£¬ÔòËûÔÚÒ»´ÎͶÀºÖÐÃüÖеĴÎÊý¦ÎµÄ·Ö²¼ÁÐΪ£¨¡¡¡¡£©
A£®
¦Î01
P0.30.7
B£®
¦Î01
P0.70.3
C£®
¦Î0
P0.7
D£®
¦Î0
P0.3

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸