精英家教网 > 高中数学 > 题目详情
8.函数$f(x)=\left\{\begin{array}{l}{x^2}-sinx+1,x>0\\{x^2}-2x-4,x\;≤\;0\end{array}\right.$的零点个数为(  )
A.0B.1C.2D.3

分析 按分段函数,分两段讨论方程的根,从而确定函数的零点的个数即可.

解答 解:当x≤0时,
由f(x)=x2-2x-4=0解得,
x=1+$\sqrt{5}$(舍去)或x=1-$\sqrt{5}$;
当x>0时,
f(x)=x2-sinx+1>0,
故方程x2-sinx+1=0无解,
综上所述,函数$f(x)=\left\{\begin{array}{l}{x^2}-sinx+1,x>0\\{x^2}-2x-4,x\;≤\;0\end{array}\right.$的零点个数为1,
故选B.

点评 本题考查了分段函数及函数的零点与方程的根的关系应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x2-2(a+1)x+2alnx.
(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当a>1时,求f(x)的单调区间与极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=$\frac{x}{1+x}$-aln(1+x),g(x)=ln(1+x)-bx.
(1)若函数f(x)在x=0处有极值,求函数f(x)的最大值;
(2)①若b是正实数,求使得关于x的不等式g(x)<0在(0,+∞)上恒成立的b的取值范围;
②证明:不等式$\sum_{k=1}^{n}$$\frac{k}{{k}^{2}+1}$-lnn≤$\frac{1}{2}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知A,B,C三点共线,{an}为等差数列,且$\overrightarrow{OC}$=a2$\overrightarrow{OA}$$+{a}_{12}\overrightarrow{OB}$,则a3+a15-a11的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知(x+$\frac{1}{x}$-2)9,展开式x3的系数为18564.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.用五点法作y=sinx-1,x∈[0,2π]的图象,并求出函数的周期和最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.sin113°cos22°+sin203°sin158°的值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某几何体的三视图如图所示,则该几何体的表面积为(  )
A.4B.21+$\sqrt{3}$C.3$\sqrt{3}$+12D.$\frac{{3\sqrt{3}}}{2}$+12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.用定积分几何意义求${∫}_{0}^{5}$2(x-2)dx的值.

查看答案和解析>>

同步练习册答案