分析 利用二项式展开式的通项公式求出展开式的常数项的表达式,列方程求出a的值.
解答 解:(a$\sqrt{x}$+$\frac{\sqrt{3}}{x}$)6(a>0)展开式中,
通项公式为:
Tr+1=${C}_{6}^{r}$•${(a\sqrt{x})}^{6-r}$•${(\frac{\sqrt{3}}{x})}^{r}$=a6-r•${(\sqrt{3})}^{r}$•${C}_{6}^{r}$•${x}^{3-\frac{3r}{2}}$,
令3-$\frac{3r}{2}$=0,解得r=2;
∴展开式的常数项是a4•${(\sqrt{3})}^{2}$•${C}_{6}^{2}$=5,
解得a=±$\frac{\sqrt{3}}{3}$;
又a>0,∴a=$\frac{\sqrt{3}}{3}$.
故答案为:$\frac{\sqrt{3}}{3}$.
点评 本题考查了二项式展开式的通项公式与应用问题,是基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 年龄(岁) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75] |
| 频数 | 3 | 6 | 6 | 3 | ||
| 赞成人数 | 2 | 4 | 5 | 4 | 2 | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{19}{3}$ | B. | $\frac{53}{8}$ | C. | $\frac{171}{6}$ | D. | $\frac{185}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$+$\frac{1}{4}$$\overrightarrow{c}$ | B. | $\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$+$\frac{1}{3}$$\overrightarrow{c}$ | C. | $\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$+$\frac{1}{6}$$\overrightarrow{c}$ | D. | $\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$-$\frac{1}{4}$$\overrightarrow{c}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com