精英家教网 > 高中数学 > 题目详情
3.已知关于x的函数g(x)=$\frac{2}{x}$-alnx(a∈R),f(x)=x2g(x).
(1)当a=-2时,求函数g(x)的单调区间;
(2)若f(x)在区间($\frac{1}{e}$,e)内有且只有一个极值点,试求a的取值范围.

分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;
(2)求出函数f(x)的导数,根据零点存在定理得到f′($\frac{1}{e}$)•f′(e)<0,求出a的范围即可.

解答 解:(1)a=-2时,g(x)=$\frac{2}{x}$+2lnx,g′(x)=$\frac{2x-2}{{x}^{2}}$,(x>0),
令g′(x)>0,解得:x>1,令g′(x)<0,解得:0<x<1,
故g(x)在(0,1)递减,在(1,+∞)递增;
(2)f(x)=x2g(x)=2x-ax2lnx,定义域是(0,+∞),
f′(x)=2-a(x+2xlnx),
若a=0,则f′(x)=2≠0,不存在极值点,故a≠0,
令h(x)=f′(x)=2-a(x+2xlnx),h′(x)=-a(3+2lnx),
x∈($\frac{1}{e}$,e)时,3+2lnx>0,
故h′(x)>0恒成立或h′(x)<0恒成立,
∴f′(x)在($\frac{1}{e}$,e)是单调函数,
∵f(x)在区间($\frac{1}{e}$,e)内有且只有1个极值点,
∴f′(x)在($\frac{1}{e}$,e)有唯一解,
由零点存在定理,得:f′($\frac{1}{e}$)•f′(e)<0,
得(2+$\frac{1}{e}$a)(2-3ea)<0,解得:a<-2e或a>$\frac{2}{3e}$,
综上,a<-2e或a>$\frac{2}{3e}$.

点评 本题考查了函数的单调性问题,考查导数的应用以及转化思想,考查零点的存在定理,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.函数$f(x)=\frac{3}{x-4}+\sqrt{{2^x}-4}$的定义域是(  )
A.[2,4)B.[2,4)∪(4,+∞)C.(2,4)∪(4,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=-2sin2x+2$\sqrt{3}$sinxcosx+1
(Ⅰ)求f(x)的最小正周期及对称中心
(Ⅱ)若x∈[-$\frac{π}{6}$,$\frac{π}{3}$],求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=lnx的反函数为G(x),函数g(x)=$\frac{{e}^{ax}}{x}$在[1,+∞)上是增函数.
(Ⅰ)求实数a的最小值;
(Ⅱ)若x0是f(x)=$\frac{1}{G(x)}$的根且x0∈(1,2),当a=1时,函数m(x)=min{xf(x),$\frac{1}{g(x)}$}的图象与直线y=n(n∈R)在(1,+∞)上的交点的横坐标为x1,x2(x1<x2),证明:x1+x2>2x0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知点A($\sqrt{3}$,2),B(0,3),C(0,1),则∠BAC=(  )
A.30°B.45°C.60°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如果实数x,y满足约束条件$\left\{\begin{array}{l}{2x+y-4≤0}\\{x-y-1≤0}\\{x≥1}\end{array}\right.$,则z=3x+2y+$\frac{y}{x}$的最大值为(  )
A.7B.8C.9D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设Sn是数列{an}的前n项和,已知a1=1,an+1=2Sn+1(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若$\frac{{b}_{n}}{{a}_{n}}$=3n-1,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{π}{3}$,且|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\frac{1}{2}$,则|$\overrightarrow{a}$-2$\overrightarrow{b}$|=(  )
A.1B.$\sqrt{3}$C.2D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知(a$\sqrt{x}$+$\frac{\sqrt{3}}{x}$)6(a>0)展开式中的常数项是5,则a=$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

同步练习册答案