分析 先根据函数f(x)的图象求出解析式,再根据g(x)=f(x)•(x-1)求得函数g(x)的解析式,分段求出最大值,则函数g(x)最大值可求.
解答 解:如图,由图可知,![]()
函数f(x)的解析式为:f(x)=$\left\{\begin{array}{l}{2x,0≤x≤1}\\{-x+3,1<x≤3}\end{array}\right.$,
又∵g(x)=f(x)•(x-1),
∴函数g(x)的解析式为:
g(x)=$\left\{\begin{array}{l}{2{x}^{2}-2x,0≤x≤1}\\{-{x}^{2}+4x-3,1<x≤3}\end{array}\right.$,
当0≤x≤1时,g(x)=$2(x-\frac{1}{2})^{2}-\frac{1}{2}$,
∴g(x)max=g(1)=g(0)=0;
当1<x≤3时,g(x)=-(x-2)2+1≤1.
∴函数g(x)最大值为1,
故答案为:1.
点评 本题考查的是分段函数解析式的求法和分段函数求最值的求法,体现了数形结合、分类讨论及数学转化思想方法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{{{(-1)}^n}+1}}{2}$ | B. | $cos\frac{nπ}{2}$ | C. | $cos\frac{(n+1)π}{2}$ | D. | $cos\frac{(n+2)π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 以上都有可能 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com