精英家教网 > 高中数学 > 题目详情
3.函数f(x)的图象是如图所示的折线段OAB,点A坐标为(1,2),点B坐标为(3,0),
定义函数g(x)=f(x)•(x-1),则函数g(x)最大值为1.

分析 先根据函数f(x)的图象求出解析式,再根据g(x)=f(x)•(x-1)求得函数g(x)的解析式,分段求出最大值,则函数g(x)最大值可求.

解答 解:如图,由图可知,
函数f(x)的解析式为:f(x)=$\left\{\begin{array}{l}{2x,0≤x≤1}\\{-x+3,1<x≤3}\end{array}\right.$,
又∵g(x)=f(x)•(x-1),
∴函数g(x)的解析式为:
g(x)=$\left\{\begin{array}{l}{2{x}^{2}-2x,0≤x≤1}\\{-{x}^{2}+4x-3,1<x≤3}\end{array}\right.$,
当0≤x≤1时,g(x)=$2(x-\frac{1}{2})^{2}-\frac{1}{2}$,
∴g(x)max=g(1)=g(0)=0;
当1<x≤3时,g(x)=-(x-2)2+1≤1.
∴函数g(x)最大值为1,
故答案为:1.

点评 本题考查的是分段函数解析式的求法和分段函数求最值的求法,体现了数形结合、分类讨论及数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.在△ABC中,已知a2+b2+$\sqrt{2}ab={c^2}$,则角C=135°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知a∈R,函数$f(x)={2^{\frac{1}{x}+a}}$.
(1)当a=1时,解不等式f(x)>4;
(2)若f(x)>2-x在x∈[2,3]恒成立,求a的取值范围;
(3)若关于x的方程f(x)-2(a-4)x+2a-5=0在区间(-2,0)内的解恰有一个,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如果直线y=ax+2与直线y=3x-b关于直线y=x对称,那么a+b=$\frac{19}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.将数字“123367”重新排列后得到不同的偶数个数为(  )
A.72B.120C.192D.240

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.数列0,1,0,1,0,1,0,1,…的一个通项公式是(  )
A.$\frac{{{{(-1)}^n}+1}}{2}$B.$cos\frac{nπ}{2}$C.$cos\frac{(n+1)π}{2}$D.$cos\frac{(n+2)π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.平面内给定三个向量$\overrightarrow{a}$=(1,3),$\overrightarrow{b}$=(-1,2),$\overrightarrow{c}$=(2,1).
(1)求满足$\overrightarrow{a}$=m$\overrightarrow{b}$+n$\overrightarrow{c}$的实数m,n;
(2)若($\overrightarrow{a}$+k$\overrightarrow{c}$)∥(2$\overrightarrow{b}$-$\overrightarrow{a}$),求实数k.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在极坐标系中,直线$ρcos(θ-\frac{π}{4})=\sqrt{2}$与曲线$ρ=\sqrt{2}$的公共点个数是(  )
A.0B.1C.2D.以上都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.根据条件求解下列问题
(1)函数f(x)=$\left\{\begin{array}{l}{x+2(x≤-1)}\\{{x}^{2}(-1<x<2)}\\{2x(x≥2)}\end{array}\right.$,若f(x)=3,求x;
(2)求函数的值域:y=$\frac{3x-1}{x+1}$.

查看答案和解析>>

同步练习册答案