分析 由直线y=ax+2,解得(a≠0)x=$\frac{y-2}{a}$,把x与y互换可得:y=$\frac{1}{a}x-\frac{2}{a}$.根据直线y=ax+2与直线y=3x-b关于直线y=x对称,可得3=$\frac{1}{a}$,-$\frac{2}{a}$=-b,解得a,b.
解答 解:由直线y=ax+2,解得(a≠0)x=$\frac{y-2}{a}$,把x与y互换可得:y=$\frac{1}{a}x-\frac{2}{a}$.
∵直线y=ax+2与直线y=3x-b关于直线y=x对称,
∴3=$\frac{1}{a}$,-$\frac{2}{a}$=-b,解得a=$\frac{1}{3}$,b=6.
∴a+b=$\frac{19}{3}$.
故答案为:$\frac{19}{3}$.
点评 本题考查了直线方程、对称性,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{1}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AD}$ | B. | $-\frac{2}{3}\overrightarrow{AB}+\frac{4}{3}\overrightarrow{AD}$ | C. | $\frac{2}{3}\overrightarrow{AB}-\overrightarrow{AD}$ | D. | $-\frac{2}{3}\overrightarrow{AB}+\overrightarrow{AD}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | d>$\frac{8}{3}$ | B. | d<3 | C. | $\frac{8}{3}$≤d<3 | D. | $\frac{4}{3}$<d≤$\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7π}{4}$ | B. | 2π | C. | $\frac{9π}{4}$ | D. | 3π |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com