精英家教网 > 高中数学 > 题目详情
7.已知△ABC的外接圆半径为1,角A,B,C的对应边分别为a,b,c,若sinB=acosC.,
(1)求$\frac{a}{c}$的值;
(2)若M为边BC的中点,$\overrightarrow{AM}•\overrightarrow{AC}=9{sin^2}A$,求角B的大小.

分析 (1)由△ABC的外接圆半径为1,及正弦定理得a=2RsinA=2sinA,⇒sinAcosC-cosAsinCsin(A-C)=0,即可得a=c,即可.
(2)由$\overrightarrow{AM}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$得$\overrightarrow{AM}•\overrightarrow{AC}=9{sin^2}A$?$\frac{1}{2}{\overrightarrow{AC}}^{2}+\frac{1}{2}\overrightarrow{AB}•\overrightarrow{AC}=9si{n}^{2}A$⇒$\frac{1}{2}{b}^{2}+\frac{1}{2}×\frac{1}{2}{b}^{2}=\frac{9{a}^{2}}{4}$⇒b=$\sqrt{3}a$,即可得cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}=\frac{2{a}^{2}-3{a}^{2}}{2{a}^{2}}=-\frac{1}{2}$.

解答 解:(1)由△ABC的外接圆半径为1,及正弦定理得a=2RsinA=2sinA,
∴sinB=acosC变形为:sin(A+C)=2sinAcosC
⇒sinAcosC-cosAsinC=0
sin(A-C)=0,∵A-C∈(-π,π),∴A-C=0,
∴a=c,∴$\frac{a}{c}$的值为1
(2)∵M为边BC的中点,∴$\overrightarrow{AM}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$
∴$\overrightarrow{AM}•\overrightarrow{AC}=9{sin^2}A$?$\frac{1}{2}{\overrightarrow{AC}}^{2}+\frac{1}{2}\overrightarrow{AB}•\overrightarrow{AC}=9si{n}^{2}A$
又∵$sinA=\frac{a}{2R}=\frac{a}{2}$,a=c
∴$\frac{1}{2}{\overrightarrow{AC}}^{2}+\frac{1}{2}\overrightarrow{AB}•\overrightarrow{AC}=9si{n}^{2}A$⇒$\frac{1}{2}{b}^{2}+\frac{1}{2}×\frac{1}{2}{b}^{2}=\frac{9{a}^{2}}{4}$⇒b=$\sqrt{3}a$
∴cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}=\frac{2{a}^{2}-3{a}^{2}}{2{a}^{2}}=-\frac{1}{2}$,
∵B∈(0,π),∴角B的大小为$\frac{2π}{3}$.

点评 本题考查了正余弦定理的应用,考查了转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.《九章算术》是我国古代一部重要的数学著作,书中有如下问题:“今有良马与驽马发长安,至齐.齐去长安三千里,良马初日行一百九十三里,日增一十三里,驾马初日行九十七里,日减半里.良马先至齐,复还迎驽马.何日相逢,”其大意为:“现在有良马和驽马同时从长安出发到齐去,已知长安和齐的距离是3000里,良马第一天行193里,之后每天比前一天多行13里,驽马第一天行97里,之后每天比前一天少行0.5里.良马到齐后,立刻返回去迎驽马,多少天后两马相遇.”现有三种说法:①驽马第九日走了93里路;②良马四日共走了930里路;③行驶5天后,良马和驽马相距615里.
那么,这3个说法里正确的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.用数学归纳法证明“1+a+a2+…+an=$\frac{1-{a}^{n+1}}{1-a}$,a≠1,n∈N*”,在验证n=1时,左边是1+a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,a,b,c分别是内角A,B,C的对边,且(a+c)2=b2+3ac.
(Ⅰ)求角B的大小;
(Ⅱ)若b=2,且sinB+sin(C-A)=2sin2A,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若命题“存在x0∈R,使x02+2x0+m≤0”是假命题,则实数m的取值范围为(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在极坐标系中,曲线C1:ρsin2θ=4cosθ.以极点为坐标原点,极轴为x轴正半轴建立直角坐标系xOy,曲线C2的参数方程为:$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$,(θ∈[-$\frac{π}{2}$,$\frac{π}{2}$]),曲线C:$\left\{\begin{array}{l}{x={x}_{0}+\frac{1}{2}t}\\{y={y}_{0}+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数).
(Ⅰ)求C1的直角坐标方程;
(Ⅱ)C与C1相交于A,B,与C2相切于点Q,求|AQ|-|BQ|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设f(x)=|3x-2|+|x-2|.
(Ⅰ)解不等式f(x)=|3x-2|+|x-2|≤8;
(Ⅱ)对任意的x,f(x)≥(m2-m+2)•|x|恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知一个几何体的三视图如图所示,则该几何体的体积为(  )
A.B.$\frac{3π}{2}$C.$\frac{4π}{3}$D.$\frac{7π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.复数$\frac{1}{2+i}$的虚部是(  )
A.-$\frac{1}{5}$B.-$\frac{1}{5}$iC.$\frac{1}{5}$D.$\frac{1}{5}$i

查看答案和解析>>

同步练习册答案