分析 (Ⅰ)整理已知等式可得a2+c2-b2=ac,由余弦定理可得cosB=$\frac{1}{2}$,结合范围B∈(0,π),可求B的值.
(Ⅱ)由三角函数恒等变换的应用化简已知可得:cosA(sinC-2sinA)=0,可得cosA=0,或sinC=2sinA,
分类讨论,利用三角形面积公式即可计算得解.
解答 (本题满分为12分)
解:(Ⅰ)∵(a+c)2=b2+3ac,
∴可得:a2+c2-b2=ac,
∴由余弦定理可得:cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{ac}{2ac}$=$\frac{1}{2}$,
∵B∈(0,π),
∴B=$\frac{π}{3}$.…6分
(Ⅱ)∵sinB+sin(C-A)=2sin2A,
∴sin(C+A)+sin(C-A)=2sin2A,
∴sinCcosA+cosCsinA+sinCcosA-cosCsinA=4sinAcosA,可得:cosA(sinC-2sinA)=0,
∴cosA=0,或sinC=2sinA,
∴当cosA=0时,A=$\frac{π}{2}$,可得c=$\frac{b}{tanB}$=$\frac{2}{\sqrt{3}}$,可得S△ABC=$\frac{1}{2}$•b•c=$\frac{1}{2}×2×\frac{2}{\sqrt{3}}$=$\frac{2\sqrt{3}}{3}$;
当sinC=2sinA时,由正弦定理知c=2a,由余弦定理可得:4=a2+c2-ac=a2+4a2-2a2=3a2,
解得:a=$\frac{2\sqrt{3}}{3}$,c=$\frac{4\sqrt{3}}{3}$,S△ABC=$\frac{1}{2}$acsinB=$\frac{1}{2}×$$\frac{2\sqrt{3}}{3}$×$\frac{4\sqrt{3}}{3}$×$\frac{\sqrt{3}}{2}$=$\frac{2\sqrt{3}}{3}$.…12分
点评 本题主要考查了余弦定理,三角函数恒等变换的应用,三角形面积公式在解三角形中的应用,考查了分类讨论思想,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | 2 | C. | $\sqrt{5}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{7}$ | B. | 3 | C. | $\sqrt{11}$ | D. | $\sqrt{13}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | $\sqrt{2}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com