2£®ÒÑÖªµãF£¨-c£¬0£©£¨c£¾0£©ÊÇË«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1µÄ×󽹵㣬¹ýF×÷Ö±ÏßÓëÔ²x2+y2=a2ÏàÇУ¬²¢Óë½¥½üÏß½»ÓÚµÚÒ»ÏóÏÞÄÚÒ»µãP£¬Âú×ã|$\overrightarrow{OF}$|=|$\overrightarrow{OP}$|£¬Ôò¸ÃË«ÇúÏßµÄÀëÐÄÂʵÈÓÚ£¨¡¡¡¡£©
A£®$\sqrt{5}$B£®2C£®$\sqrt{3}$D£®$\frac{\sqrt{5}}{2}$

·ÖÎö ÉèÇÐÏߵķ½³ÌΪy=k£¨x+c£©£¬k£¾0£¬ÓÉÖ±ÏߺÍÔ²ÏàÇеÄÌõ¼þ¿ÉµÃ$\frac{|kc|}{\sqrt{1+{k}^{2}}}$=a£¬½â·½³Ì¿ÉµÃk£¬ÁªÁ¢½¥½üÏß·½³ÌºÍÇÐÏß·½³Ì£¬ÇóµÃPµÄ×ø±ê£¬ÔÙÓÉÁ½µãµÄ¾àÀ빫ʽ£¬»¯¼òÕûÀí£¬ÔËÓÃÀëÐÄÂʹ«Ê½¼ÆËã¼´¿ÉµÃµ½ËùÇóÖµ£®

½â´ð ½â£ºÉèÇÐÏߵķ½³ÌΪy=k£¨x+c£©£¬k£¾0£¬
ÓÉÖ±ÏߺÍÔ²ÏàÇеÄÌõ¼þ¿ÉµÃ$\frac{|kc|}{\sqrt{1+{k}^{2}}}$=a£¬
½âµÃk=$\frac{a}{b}$£¬
¼´ÇÐÏߵķ½³ÌΪy=$\frac{a}{b}$£¨x+c£©£¬
´úÈë½¥½üÏß·½³Ìy=$\frac{b}{a}$x£¬
¿ÉµÃ½»µãP£¨$\frac{{a}^{2}c}{{b}^{2}-{a}^{2}}$£¬$\frac{abc}{{b}^{2}-{a}^{2}}$£©£¬
ÓÉ|$\overrightarrow{OF}$|=|$\overrightarrow{OP}$|£¬¿ÉµÃ£º
c=$\frac{ac\sqrt{{a}^{2}+{b}^{2}}}{{b}^{2}-{a}^{2}}$£¬
¼´Îªac=b2-a2=c2-2a2£¬
ÓÉe=$\frac{c}{a}$£¬¿ÉµÃe2-e-2=0£¬
½âµÃe=2£¨-1ÉáÈ¥£©£¬
¹ÊÑ¡£ºB£®

µãÆÀ ±¾Ì⿼²éË«ÇúÏßµÄÀëÐÄÂʵÄÇ󷨣¬×¢ÒâÔËÓÃË«ÇúÏߵĽ¥½üÏß·½³Ì£¬ÒÔ¼°Ö±ÏߺÍÔ²ÏàÇеÄÌõ¼þ£ºd=r£¬Í¬Ê±¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖª¸´Êýz×ãzi=-1+i£¬ÔòzµÈÓÚ£¨¡¡¡¡£©
A£®-1-iB£®1-iC£®-1+iD£®1+i

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®É躯Êýf£¨x£©=x2-2x+3£¬g£¨x£©=x2-x£®
£¨1£©½â²»µÈʽ|f£¨x£©-g£¨x£©|¡Ý2016£»
£¨2£©Èô|f£¨x£©-a|£¼2³ÉÁ¢µÄ³ä·ÖÌõ¼þÊÇ1¡Üx¡Ü2£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªa£¬bÊDz»È«ÎªÁãµÄʵÊý£¬º¯Êýf£¨x£©=3ax2+2bx-£¨a+b£©£¨a£¬b¾ùΪʵÊý£©
£¨¢ñ£©Èôa=1£¬ÇÒ¶ÔÒ»ÇÐb¡Ê£¨1£¬2£©ºãÓÐf£¨x£©£¾3x2+b2£¬ÇóxµÄȡֵ·¶Î§£»
£¨¢ò£©ÇóÖ¤£ºº¯Êýf£¨x£©ÔÚ£¨0£¬1£©ÄÚÒ»¶¨ÓÐÁãµã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖªº¯Êýf£¨x£©=2x+1+$\frac{a}{2^x}$£¬¸ø³öÈç϶þ¸öÃüÌ⣺
p1£º?a¡ÊR£¬Ê¹µÃº¯Êýy=f£¨x£©ÊÇżº¯Êý£»
p2£ºÈôa=-3£¬Ôòy=f£¨x£©ÔÚ$£¨{\frac{1}{2}£¬+¡Þ}£©$ÉÏÓÐÁãµã£®
ÔòÏÂÁÐÃüÌâÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®©Vp1B£®©Vp1¡Åp2C£®p1¡Äp2D£®p1¡Ä£¨©Vp2£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Ö±ÈýÀâÖùABC-A1B1C1ÖеIJàÀⳤΪ4cm£¬ÔÚµ×Ãæ¡÷ABCÖУ¬AC=BC=2cm£¬¡ÏACB=90¡ã£¬EΪABµÄÖе㣬CF¡ÍAB1´¹×ãΪF
£¨¢ñ£©ÇóÖ¤CE¡ÍAB1£»
£¨¢ò£©ÇóCEÓëAB1µÄ¾àÀ룻
£¨¢ó£©Çó½ØÃæAB1CÓë²àÃæABB1A1Ëù³É¶þÃæ½ÇC-AB1-BµÄÕýÇÐÖµ£»
£¨¢ô£©ÇóÈýÀâ×¶C-AEFµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®A£¬B£¬CÊÇÔ²OÉϲ»Í¬µÄÈýµã£¬Ïß¶ÎCOÓëÏß¶ÎAB½»ÓÚµãD£¬Èô$\overrightarrow{OC}$=¦Ë$\overrightarrow{OA}$+¦Ì$\overrightarrow{OB}$£¨¦Ë¡ÊR£¬¦Ì¡ÊR£©£¬Ôò¦Ë+¦ÌµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨1£¬+¡Þ£©B£®£¨0£¬1£©C£®£¨1£¬$\sqrt{2}$]D£®£¨-1£¬0£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®É躯Êýf£¨x£©=x2+ax+b£¬a£¬b¡ÊR£®
£¨¢ñ£©Èô2a+b=4£¬Ö¤Ã÷£º|f£¨x£©|ÔÚÇø¼ä[0£¬4]ÉϵÄ×î´óÖµM£¨a£©¡Ý12£»
£¨¢ò£©´æÔÚʵÊýa£¬Ê¹µÃµ±x¡Ê[0£¬b]ʱ£¬1¡Üf£¨x£©¡Ü10ºã³ÉÁ¢£¬ÇóʵÊýbµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®µ±Ë«ÇúÏߣº$\frac{{x}^{2}}{{m}^{2}+8}$-$\frac{{y}^{2}}{6-2m}$=1µÄ½¹¾àÈ¡µÃ×îСֵʱ£¬Æä½¥½üÏßµÄбÂÊΪ£¨¡¡¡¡£©
A£®¡À1B£®$¡À\frac{2}{3}$C£®$¡À\frac{1}{3}$D£®$¡À\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸