分析 (1)化圆的参数方程为普通方程,利用过原点的圆的切线的斜率求得$\frac{y}{x}$的范围;
(2)化圆的直角坐标方程为极坐标方程,和直线线θ=$\frac{π}{4}$联立后,利用根与系数的关系求解.
解答 解:(1)由$\left\{\begin{array}{l}{x=2+\sqrt{3}cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$,得(x-2)2+y2=3,
如图,![]()
设过原点的直线方程为y=kx,由圆心(2,0)到直线的距离为$\sqrt{3}$,得
$\frac{|2k|}{\sqrt{{k}^{2}+1}}=\sqrt{3}$,即$k=±\sqrt{3}$,
∴$\frac{y}{x}$的范围为[$-\sqrt{3},\sqrt{3}$];
(2)曲线C的极坐标方程可化为ρ2-4ρcosθ+1=0,
把θ=$\frac{π}{4}$代入上式可得:${ρ}^{2}-2\sqrt{2}ρ+1=0$,
设A,B两点的极径分别为ρ1,ρ2,则${ρ}_{1}+{ρ}_{2}=2\sqrt{2}$.
故|OA|+|OB|=${ρ}_{1}+{ρ}_{2}=2\sqrt{2}$.
点评 本题考查参数方程化普通方程,考查直角坐标方程化极坐标方程,考查了直线和圆的位置关系,是基础题.
科目:高中数学 来源: 题型:选择题
| A. | a≥1 | B. | a≤1 | C. | a≥-1 | D. | a≤-3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-6,2] | B. | [-6,0)∪( 0,2] | C. | [-2,0)∪( 0,6] | D. | (0,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{5}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5π}{12}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com