精英家教网 > 高中数学 > 题目详情
3.已知复数z满足(z+1)(1+i)=1-i,则|z|=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{5}$

分析 利用复数的运算法则、模的计算公式即可得出.

解答 解:∵(z+1)(1+i)=1-i,
∴z+1=$\frac{1-i}{1+i}$=$\frac{(1-i)^{2}}{(1+i)(1-i)}$=$\frac{-2i}{2}$=-i.
∴z=-1-i.
则|z|=$\sqrt{2}$.
故选:B.

点评 本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的前n项和为Sn,且Sn=2an-2(n∈N*).
(1)求{an}的通项公式;
(2)设${b_{n+1}}=2{b_n}-{2^{n+1}}$,b1=8,Tn是数列{bn}的前n项和,求正整数k,使得对任意n∈N*均有Tk≥Tn恒成立;
(3)设${c_n}=\frac{{{a_{\;n\;+\;1}}}}{{(1+{a_n})(1+{a_{\;n\;+\;1}})}}$,Rn是数列{cn}的前n项和,若对任意n∈N*均有Rn<λ恒成立,求λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)=\frac{1}{3}{x^3}-{x^2}-3x$有两个极值点x1,x2,且x1<x2,记点M(x1,f(x1)),N(x2,f(x2)).
(Ⅰ)求直线MN的方程;
(Ⅱ)证明:线段MN与曲线y=f(x)有且只有一个异于M、N的公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=Asin(ωx+φ)(A,ω,φ为常数,A>0,ω>0,|φ|<π)的部分图象如图所示,则下列结论正确的是(  )
A.函数f(x)的最小正周期为$\frac{π}{2}$
B.直线x=-$\frac{π}{12}$是函数f(x)图象的一条对称轴
C.函数f(x)在区间[-$\frac{5π}{12}$,$\frac{π}{6}$]上单调递增
D.将函数f(x)的图象向左平移$\frac{π}{3}$个单位,得到函数g(x)的图象,则g(x)=2sin2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设x,y满足约束条件$\left\{\begin{array}{l}{3x-y-6≤0}\\{x-y+2≥0}\\{x≥0,y≥0}\end{array}\right.$,若目标函数z=ax+by(a,b>0)的最大值是12,则a2+b2的最小值是(  )
A.$\frac{6}{13}$B.$\frac{36}{5}$C.$\frac{36}{13}$D.$\frac{6}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设f(x)=$\left\{\begin{array}{l}{3{e}^{x-1},x<2}\\{lo{g}_{2}({x}^{2}-1),x≥2}\end{array}\right.$,则不等式f(x)<3的解集为(  )
A.(-∞,$\sqrt{7}$)B.(-∞,3)C.(-∞,1)∪[2,$\sqrt{7}$)D.(-∞,1)∪[2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知△ABC是边长为4的等边三角形,D、P是△ABC内部两点,且满足$\overrightarrow{AD}=\frac{1}{4}(\overrightarrow{AB}+\overrightarrow{AC})$,$\overrightarrow{AP}=\overrightarrow{AD}+\frac{1}{8}\overrightarrow{BC}$,则△ADP的面积为(  )
A.$\frac{{\sqrt{3}}}{4}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.球O与棱长为2的正方体ABCD-A1B1C1D1的各个面都相切,点M为棱DD1的中点,则平面ACM截球O所得截面的面积为(  )
A.$\frac{4π}{3}$B.πC.$\frac{2π}{3}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知双曲线$\frac{x^2}{a^2}-{y^2}$=1的一条渐近线方程是y=$\frac{{\sqrt{3}}}{3}$x,则双曲线的离心率为(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{6}}}{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

同步练习册答案