精英家教网 > 高中数学 > 题目详情
8.设f(x)=$\left\{\begin{array}{l}{3{e}^{x-1},x<2}\\{lo{g}_{2}({x}^{2}-1),x≥2}\end{array}\right.$,则不等式f(x)<3的解集为(  )
A.(-∞,$\sqrt{7}$)B.(-∞,3)C.(-∞,1)∪[2,$\sqrt{7}$)D.(-∞,1)∪[2,3)

分析 利用分段函数,列出不等式转化求解即可.

解答 解:f(x)=$\left\{\begin{array}{l}{3{e}^{x-1},x<2}\\{lo{g}_{2}({x}^{2}-1),x≥2}\end{array}\right.$,则不等式f(x)<3,可得:$\left\{\begin{array}{l}{x<2}\\{3{e}^{x-1}<3}\end{array}\right.$,解得x<1.
$\left\{\begin{array}{l}{x≥2}\\{lo{g}_{2}({x}^{2}-1)<3}\end{array}\right.$,解得2≤x<3.
则不等式f(x)<3的解集为:(-∞,1)∪[2,3).
故选:D.

点评 本题考查分段函数的应用,指数与对数不等式的解法,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知函数$f(x)=lnx-\frac{{m({x+n})}}{x+1}$(m>0,n∈R)在(0,+∞)上不单调,若m-n>λ恒成立,则实数λ的取值范围为(  )
A.[3,+∞)B.[4,+∞)C.(-∞,3]D.(-∞,4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.有4个不同的球,4个不同的盒子,把球全部放入盒子内.
(1)共有几种放法?
(2)恰有1个空盒,有几种放法?
(3)恰有2个盒子不放球,有几种放法?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,点P(3,4)在双曲线的渐近线上,若|$\overrightarrow{P{F}_{1}}$$+\overrightarrow{P{F}_{2}}$|=|$\overrightarrow{{F}_{1}{F}_{2}}$|,则此双曲线的方程为(  )
A.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1C.$\frac{{x}^{2}}{4}$$-\frac{{y}^{2}}{3}$=1D.$\frac{{x}^{2}}{9}$$-\frac{{y}^{2}}{16}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知复数z满足(z+1)(1+i)=1-i,则|z|=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.命题“若x=1,则x2-3x+2=0”的逆否命题是(  )
A.若x≠1,则x2-3x+2≠0B.若x2-3x+2=0,则x=1
C.若x2-3x+2=0,则x≠1D.若x2-3x+2≠0,则x≠1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某条公共汽车线路收支差额y与乘客量x的函数关系如图所示(收支差额=车票收入-支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(Ⅰ)不改变车票价格,减少支出费用;建议(Ⅱ)不改变支出费用,提高车票价格,下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则(  )
A.①反映了建议(Ⅱ),③反映了建议(Ⅰ)B.①反映了建议(Ⅰ),③反映了建议(Ⅱ)
C.②反映了建议(Ⅰ),④反映了建议(Ⅱ)D.④反映了建议(Ⅰ),②反映了建议(Ⅱ)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知数列{an}中,前n项和为Sn,且${S_n}=\frac{n+2}{3}{a_n}$,则$\frac{a_n}{{{a_{n-1}}}}$的最大值为(  )
A.-3B.-1C.3D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知离散型随机变量X的分布列为
X012
Pa$\frac{1}{2}$$\frac{1}{4}$
则变量X的数学期望E(X)=1,方差D(X)=$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案