精英家教网 > 高中数学 > 题目详情
16.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,点P(3,4)在双曲线的渐近线上,若|$\overrightarrow{P{F}_{1}}$$+\overrightarrow{P{F}_{2}}$|=|$\overrightarrow{{F}_{1}{F}_{2}}$|,则此双曲线的方程为(  )
A.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1C.$\frac{{x}^{2}}{4}$$-\frac{{y}^{2}}{3}$=1D.$\frac{{x}^{2}}{9}$$-\frac{{y}^{2}}{16}$=1

分析 根据题意,设双曲线的焦点坐标为F1(-c,0)、F2(c,0),由双曲线的标准方程可得其渐近线方程为y=±$\frac{b}{a}$x,结合题意可得$\frac{b}{a}$=$\frac{4}{3}$;有P、F1、F2的坐标可得向量$\overrightarrow{P{F}_{1}}$、$\overrightarrow{P{F}_{2}}$的坐标,计算可得$\overrightarrow{P{F}_{1}}$$+\overrightarrow{P{F}_{2}}$=(6,8),结合题意可得|$\overrightarrow{{F}_{1}{F}_{2}}$|=10,即可得c的值,由双曲线的几何性质可得a2+b2=25,又由$\frac{b}{a}$=$\frac{4}{3}$,解可得a2、b2的值,代入双曲线的方程,即可得答案.

解答 解:根据题意,设双曲线的焦点坐标为F1(-c,0)、F2(c,0),
双曲线的方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,其焦点在x轴上,则其渐近线方程为y=±$\frac{b}{a}$x,
又由点P(3,4)在双曲线的渐近线上,则其一条渐近线方程为:y=$\frac{4}{3}$x,
则有$\frac{b}{a}$=$\frac{4}{3}$,
又由P(3,4),F1(-c,0)、F2(c,0),
则$\overrightarrow{P{F}_{1}}$=(-c-3,-4),$\overrightarrow{P{F}_{2}}$=(c-3,-4)
则$\overrightarrow{P{F}_{1}}$$+\overrightarrow{P{F}_{2}}$=(-6,-8),则$\overrightarrow{P{F}_{1}}$$+\overrightarrow{P{F}_{2}}$|=10,
又由|$\overrightarrow{P{F}_{1}}$$+\overrightarrow{P{F}_{2}}$|=|$\overrightarrow{{F}_{1}{F}_{2}}$|,则|$\overrightarrow{{F}_{1}{F}_{2}}$|=10,即2c=10,
则有c=5,
即a2+b2=25,
又由$\frac{b}{a}$=$\frac{4}{3}$,
解可得a2=9,b2=16,
则双曲线的方程为:$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1;
故选:D.

点评 本题考查双曲线的几何性质,注意有|$\overrightarrow{P{F}_{1}}$$+\overrightarrow{P{F}_{2}}$|=|$\overrightarrow{{F}_{1}{F}_{2}}$|分析得到c的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=Asin(wx+φ)(A>0,w>0,|φ|<\frac{π}{2})$的部分图象如图所示.
(1)求f(x)的解析式;
(2)求f(x)的单调递增区间和对称中心坐标;
(3)将f(x)的图象向左平移$\frac{π}{6}$个单位,再讲横坐标伸长到原来的2倍,纵坐标不变,最后将图象向上平移1个单位,得到函数g(x)的图象,求函数y=g(x)在$x∈[0,\frac{7π}{6}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.向量$\overrightarrow{a}$=(-1,1),$\overrightarrow{b}$=(1,0),若($\overrightarrow{a}$-$\overrightarrow{b}$)⊥(2$\overrightarrow{a}$+λ$\overrightarrow{b}$),则λ=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=(x-a)2(a∈R),g(x)=lnx,
(I)试求曲线F(x))=f(x)+g(x)在点(1,F(1))处的切线l与曲线F(x)的公共点个数;
(II)若函数G(x)=f(x).g(x)有两个极值点,求实数a的取值范围.
(附:当a<0,x趋近于0时,2lnx-$\frac{a}{x}$趋向于+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=Asin(ωx+φ)(A,ω,φ为常数,A>0,ω>0,|φ|<π)的部分图象如图所示,则下列结论正确的是(  )
A.函数f(x)的最小正周期为$\frac{π}{2}$
B.直线x=-$\frac{π}{12}$是函数f(x)图象的一条对称轴
C.函数f(x)在区间[-$\frac{5π}{12}$,$\frac{π}{6}$]上单调递增
D.将函数f(x)的图象向左平移$\frac{π}{3}$个单位,得到函数g(x)的图象,则g(x)=2sin2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=x+xlnx,若k∈Z,且k(x-2)<f(x)对任意的x>2恒成立,则k的最大值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设f(x)=$\left\{\begin{array}{l}{3{e}^{x-1},x<2}\\{lo{g}_{2}({x}^{2}-1),x≥2}\end{array}\right.$,则不等式f(x)<3的解集为(  )
A.(-∞,$\sqrt{7}$)B.(-∞,3)C.(-∞,1)∪[2,$\sqrt{7}$)D.(-∞,1)∪[2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.“log2a>log2b”是“${({\frac{1}{3}})^a}<{({\frac{1}{3}})^b}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足:$\overrightarrow{a}$2=(5$\overrightarrow{a}$-4$\overrightarrow{b}$)•$\overrightarrow{b}$,则cos<$\overrightarrow{a}$,$\overrightarrow{b}$>的最小值为$\frac{4}{5}$.

查看答案和解析>>

同步练习册答案