精英家教网 > 高中数学 > 题目详情
6.已知函数$f(x)=Asin(wx+φ)(A>0,w>0,|φ|<\frac{π}{2})$的部分图象如图所示.
(1)求f(x)的解析式;
(2)求f(x)的单调递增区间和对称中心坐标;
(3)将f(x)的图象向左平移$\frac{π}{6}$个单位,再讲横坐标伸长到原来的2倍,纵坐标不变,最后将图象向上平移1个单位,得到函数g(x)的图象,求函数y=g(x)在$x∈[0,\frac{7π}{6}]$上的最大值和最小值.

分析 (1)由图象可求A,B,T,利用周期公式可得$ω=\frac{2π}{T}=2$,由图象及五点法作图可求φ,即可得解f(x)的函数解析式.
(2)令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z,解得kπ-$\frac{5π}{12}$≤x≤kπ+$\frac{π}{12}$,k∈Z,可得f(x)的单调递增区间,令2x+$\frac{π}{3}$=kπ,k∈Z,可求f(x)的对称中心的坐标.
(3)由已知的图象变换过程可得:g(x)=2sin(x+$\frac{2π}{3}$),结合范围0≤x≤$\frac{7π}{6}$,可求$\frac{2π}{3}$$≤x+\frac{2π}{3}$≤$\frac{11π}{6}$,利用正弦函数的图象和性质即可计算得解.

解答 (本题满分为12分)
解:(1)由图象可知$\left\{\begin{array}{l}{A+B=1}\\{-A+B=-3}\end{array}\right.$,可得:A=2,B=-1,…(2分)
又由于$\frac{T}{2}$=$\frac{7π}{12}$-$\frac{π}{12}$,可得:T=π,所以$ω=\frac{2π}{T}=2$,…(3分)
由图象及五点法作图可知:2×$\frac{π}{12}$+φ=$\frac{π}{2}$,所以φ=$\frac{π}{3}$,
所以f(x)=2sin(2x+$\frac{π}{3}$)-1.…(4分)
(2)由(1)知,f(x)=2sin(2x+$\frac{π}{3}$)-1,
令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z,
得kπ-$\frac{5π}{12}$≤x≤kπ+$\frac{π}{12}$,k∈Z,…(6分)
所以f(x)的单调递增区间为[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$],k∈Z,
令2x+$\frac{π}{3}$=kπ,k∈Z,得x=$\frac{kπ}{2}$-$\frac{π}{6}$,k∈Z,
所以f(x)的对称中心的坐标为($\frac{kπ}{2}$-$\frac{π}{6}$,-1),k∈Z.…(8分)
(3)由已知的图象变换过程可得:g(x)=2sin(x+$\frac{2π}{3}$),
因为0≤x≤$\frac{7π}{6}$,所以$\frac{2π}{3}$$≤x+\frac{2π}{3}$≤$\frac{11π}{6}$,…(10分)
所以当x+$\frac{2π}{3}$=$\frac{3π}{2}$,得x=$\frac{5π}{6}$时,g(x)取得最小值g($\frac{5π}{6}$)=-2,
当x+$\frac{2π}{3}$=$\frac{2π}{3}$,即x=0时,g(x)取得最大值g(0)=$\sqrt{3}$.…(12分)

点评 本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,三角函数平移变换的规律,考查了正弦函数的图象和性质的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.设函数y=x3-2x,P(1,-1)为函数图象上的点,
(1)求函数图象在点P处的切线方程;
(2)求该切线与坐标轴所围成的三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow{OA}$=(1,-3),$\overrightarrow{OB}$=(2,-1),$\overrightarrow{OC}$=(k+1,k+3),若A、B、C三点不能构成三角形,则实数k应满足的条件是(  )
A.k=-6B.k=6C.k=$\frac{1}{2}$D.k=-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x-2lnx-$\frac{a}{x}$+1,g(x)=ex(2lnx-x)+b.
(1)若函数f(x)在定义域上是增函数,求a的取值范围;
(2)若g(x)=0有解,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.为了估计某人的射击技术情况,在他的训练记录中抽取50次检验,他的命中环数如下:10,5,5,8,7,8,6,9,7,8,6,6,5,6,7,8,10,9,7,9,8,7,6,5,9,9,8,8,5,8,6,7,6,9,6,8,8,8,6,7,6,8,107,10,8,7,7,9,5
(1)列出频率分布表
(2)画出频率分布的直方图.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.点M(x,y)在圆x2+(y-2)2=1上运动,则$\frac{xy}{{4{x^2}+{y^2}}}$的取值范围是(  )
A.(-∞,-$\frac{1}{4}$]∪[$\frac{1}{4}$,+∞)B.(-∞,-$\frac{1}{4}$]∪[$\frac{1}{4}$,+∞)∪{0}C.$[{-\frac{1}{4},0})∪({0,\frac{1}{4}}]$D.$[{-\frac{1}{4},\frac{1}{4}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数$f(x)=lnx-\frac{{m({x+n})}}{x+1}$(m>0,n∈R)在(0,+∞)上不单调,若m-n>λ恒成立,则实数λ的取值范围为(  )
A.[3,+∞)B.[4,+∞)C.(-∞,3]D.(-∞,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合M={x|y=lg(x-2),N={x|x≥a},若集合M∩N=N,则实数a的取值范围是(  )
A.(2,+∞)B.[2,+∞)C.(-∞,0)D.(-∞,0]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,点P(3,4)在双曲线的渐近线上,若|$\overrightarrow{P{F}_{1}}$$+\overrightarrow{P{F}_{2}}$|=|$\overrightarrow{{F}_{1}{F}_{2}}$|,则此双曲线的方程为(  )
A.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1C.$\frac{{x}^{2}}{4}$$-\frac{{y}^{2}}{3}$=1D.$\frac{{x}^{2}}{9}$$-\frac{{y}^{2}}{16}$=1

查看答案和解析>>

同步练习册答案