| A. | 函数f(x)的最小正周期为$\frac{π}{2}$ | |
| B. | 直线x=-$\frac{π}{12}$是函数f(x)图象的一条对称轴 | |
| C. | 函数f(x)在区间[-$\frac{5π}{12}$,$\frac{π}{6}$]上单调递增 | |
| D. | 将函数f(x)的图象向左平移$\frac{π}{3}$个单位,得到函数g(x)的图象,则g(x)=2sin2x |
分析 先求出函数的解析式,再进行判断,即可得出结论.
解答 解:根据函数f(x)=Asin(ωx+φ)(A,ω,φ为常数,A>0,ω>0,|φ|<π)的部分图象,
可得A=2,图象的一条对称轴方程为x=$\frac{\frac{π}{2}+\frac{2π}{3}}{2}$=$\frac{7π}{12}$,一个对称中心为为($\frac{π}{3}$,0),
∴$\frac{T}{4}$=$\frac{7π}{12}-\frac{π}{3}$=$\frac{π}{4}$,∴T=$π=\frac{2π}{ω}$,∴ω=2,
代入($\frac{7π}{12}$,2)可得2=2sin(2×$\frac{7π}{12}$+φ),∵|φ|<π,∴φ=-$\frac{2π}{3}$,
∴f(x)=2sin(2x-$\frac{2π}{3}$),将函数f(x)的图象向左平移$\frac{π}{3}$个单位,可得g(x)=2sin[2(x+$\frac{π}{3}$)-$\frac{2π}{3}$]=2sin2x,
故选:D.
点评 本题考查三角函数的图象与性质,考查学生的计算能力,确定函数的解析式是关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1 | B. | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1 | C. | $\frac{{x}^{2}}{4}$$-\frac{{y}^{2}}{3}$=1 | D. | $\frac{{x}^{2}}{9}$$-\frac{{y}^{2}}{16}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①反映了建议(Ⅱ),③反映了建议(Ⅰ) | B. | ①反映了建议(Ⅰ),③反映了建议(Ⅱ) | ||
| C. | ②反映了建议(Ⅰ),④反映了建议(Ⅱ) | D. | ④反映了建议(Ⅰ),②反映了建议(Ⅱ) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com