分析 (1)先求函数f(x)的定义域,再求出函数的导数,从而讨论确定函数的单调性;
(2)存在x1,x2∈[-$\frac{1}{3}$,3],使得g(x1)-g(x2)≥M成立可化为[g(x1)-g(x2)]max≥M,从而化为求g(x)的最值,从而求解.
(3)化简可知g(x)的最大值是1,从而可得只需当x∈[$\frac{1}{3}$,2]时,xf(x)=$\frac{a}{x}$+xlnx≥1恒成立,可化为a≥x-x2lnx恒成立,从而转化为最值问题
解答 解:(1)函数f(x)=$\frac{a}{{x}^{2}}$+lnx的定义域(0,+∞),
f′(x)=-$\frac{2a}{{x}^{3}}$+$\frac{1}{x}$=$\frac{{x}^{2}-2a}{{x}^{3}}$,
①当a≤0时,f′(x)≥0,
函数f(x)在(0,+∞)上单调递增;
②当a>0时,由f′(x)≥0得x≥$\sqrt{2a}$,
函数f(x)的单调递增区间为($\sqrt{2a}$,+∞);
由f′(x)≤0得0<x≤$\sqrt{2a}$,
函数f(x)的单调递减区间为(0,$\sqrt{2a}$).
(2)存在x1,x2∈[-$\frac{1}{3}$,3],使得g(x1)-g(x2)≥M成立,
可化为[g(x1)-g(x2)]max≥M;
考察g(x)=x3-x2-3,g′(x)=3x2-2x=3x(x-$\frac{2}{3}$);
| x | -$\frac{1}{3}$ | (-$\frac{1}{3}$,0) | 0 | (0,$\frac{2}{3}$) | $\frac{2}{3}$ | ($\frac{2}{3}$,3) | 3 |
| g'(x) | + | 0 | - | 0 | + | ||
| g(x) | -$\frac{85}{27}$ | 递增 | -3 | 递减 | -$\frac{85}{27}$ | 递增 | 15 |
点评 本题考查了导数的综合应用及恒成立问题,考查了构造函数的应用,属于难题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{8}{3}$ | C. | $\frac{6}{5}$ | D. | $\frac{12}{25}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 函数f(x)的最小正周期为$\frac{π}{2}$ | |
| B. | 直线x=-$\frac{π}{12}$是函数f(x)图象的一条对称轴 | |
| C. | 函数f(x)在区间[-$\frac{5π}{12}$,$\frac{π}{6}$]上单调递增 | |
| D. | 将函数f(x)的图象向左平移$\frac{π}{3}$个单位,得到函数g(x)的图象,则g(x)=2sin2x |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4π}{3}$ | B. | π | C. | $\frac{2π}{3}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com