精英家教网 > 高中数学 > 题目详情
12.“渐升数”是指正整数中每个数字比其左边的数字大的数,如:24578,则五位“渐升数”共有126个.

分析 分析可得“渐升数”中不能有0,则可以在其他9个数字中任取5个,按从小到大的顺序排成一列,即可以组成一个“渐升数”,即每种取法对应一个“渐升数”,由组合数公式计算C95即可得答案,

解答 解:根据题意,“渐升数”中不能有0,
则在其他9个数字中任取5个,每种取法对应一个“渐升数”,
则共有“渐升数”C95=126个.
故答案为:126.

点评 本题考查排列、组合的应用,关键是理解“渐升数”的含义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.若MP和OM分别是角α=$\frac{7π}{8}$的正弦线和余弦线,那么下列结论中正确的是(  )
A.MP<OM<0B.OM>0>MPC.OM<MP<0D.MP>0>OM

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若$cos(\frac{π}{2}-α)=\frac{{\sqrt{2}}}{3}$,则cos(π-2α)=$-\frac{5}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知P(-$\frac{4}{5}$,$\frac{3}{5}$)是角终边上一点,则2sinα+cosα的值等于(  )
A.$\frac{1}{5}$B.-$\frac{1}{5}$C.-$\frac{2}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.抛物线x=$\frac{1}{4m}$y2的焦点坐标是(m,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow{OA}$=(1,-3),$\overrightarrow{OB}$=(2,-1),$\overrightarrow{OC}$=(k+1,k+3),若A、B、C三点不能构成三角形,则实数k应满足的条件是(  )
A.k=-6B.k=6C.k=$\frac{1}{2}$D.k=-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.观察如表:
1,
2,3,
4,5,6,7,
8,9,10,11,12,13,14,15,

问:(1)此表第n行的最后一个数是多少?
(2)此表第n行的各个数之和是多少?
(3)2 018是第几行的第几个数?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.为了估计某人的射击技术情况,在他的训练记录中抽取50次检验,他的命中环数如下:10,5,5,8,7,8,6,9,7,8,6,6,5,6,7,8,10,9,7,9,8,7,6,5,9,9,8,8,5,8,6,7,6,9,6,8,8,8,6,7,6,8,107,10,8,7,7,9,5
(1)列出频率分布表
(2)画出频率分布的直方图.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=$\frac{a}{{x}^{2}}$+lnx,g(x)=x3-x2-3.
(1)函数f(x)在区间[1,+∞)上是单调函数,求实数a的取值范围;
(2)若存在x1,x2∈[-$\frac{1}{3}$,3],使得g(x1)-g(x2)≥M成立,求满足条件的最大整数M;
(3)如果对任意的s,t∈[$\frac{1}{3}$,2]都有sf(s)≥g(t)成立,求实数a的范围.

查看答案和解析>>

同步练习册答案