精英家教网 > 高中数学 > 题目详情
7.抛物线x=$\frac{1}{4m}$y2的焦点坐标是(m,0).

分析 化简抛物线方程为标准方程,然后求解焦点坐标.

解答 解:方程改写成y2=4mx,得2p=4m,∴p=2m,可得焦点(m,0).
故答案为:(m,0).

点评 本题考查抛物线的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.设数列{an}的前n项和Sn=2an-a1,且a1,a2+1,a3成等差数列.
(1)求数列{an}的通项公式;
(2)设 bn=log2an,${c_n}=\frac{3}{{{b_n}{b_{n+1}}}}$,记数列 {cn}的前n项和Tn,若 ${T_n}<\frac{m}{3}$对所有的正整数 n都成立,求最小正整数 m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若变量x,y满足约束条件$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-3≥0}\\{x-3≤0}\end{array}\right.$,则z=x-2y的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知a=log23,b=${log_{\frac{1}{2}}}3$,c=3${\;}^{\frac{1}{2}}$,则(  )
A.c>b>aB.c>a>bC.a>b>cD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}满足a1=$\frac{1}{2}$,an+1=$\frac{{({n+1})({2{a_n}-n})}}{{{a_n}+4n}}$(n∈N*).
(1)求a2,a3
(2)已知存在实数k,使得数列{$\frac{{a}_{n}-k{n}^{2}}{{a}_{n}-n}$}为公差为1的等差数列,求k的值;
(3)记bn=$\frac{1}{{{{({\sqrt{3}})}^{n+2}}{a_{n+2}}}}$(n∈N*),数列{bn}的前n项和为Sn,求证:Sn>-$\frac{{2\sqrt{3}+1}}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.“渐升数”是指正整数中每个数字比其左边的数字大的数,如:24578,则五位“渐升数”共有126个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,a,b,c分别为角A,B,C所对的边,若(a-b+c)(a+b+c)=3ac,则B=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知p:实数x满足x2-4ax+3a2<0(a>0),q:实数x满足|x-3|>1,若p是q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,正方形ABCD中,P,Q分别是边BC,CD的中点,若$\overrightarrow{AC}$=x$\overrightarrow{AP}$+y$\overrightarrow{BQ}$,则xy=(  )
A.2B.$\frac{8}{3}$C.$\frac{6}{5}$D.$\frac{12}{25}$

查看答案和解析>>

同步练习册答案