2£®ÒÑÖªÊýÁÐ{an}Âú×ãa1=$\frac{1}{2}$£¬an+1=$\frac{{£¨{n+1}£©£¨{2{a_n}-n}£©}}{{{a_n}+4n}}$£¨n¡ÊN*£©£®
£¨1£©Çóa2£¬a3£»
£¨2£©ÒÑÖª´æÔÚʵÊýk£¬Ê¹µÃÊýÁÐ{$\frac{{a}_{n}-k{n}^{2}}{{a}_{n}-n}$}Ϊ¹«²îΪ1µÄµÈ²îÊýÁУ¬ÇókµÄÖµ£»
£¨3£©¼Çbn=$\frac{1}{{{{£¨{\sqrt{3}}£©}^{n+2}}{a_{n+2}}}}$£¨n¡ÊN*£©£¬ÊýÁÐ{bn}µÄǰnÏîºÍΪSn£¬ÇóÖ¤£ºSn£¾-$\frac{{2\sqrt{3}+1}}{12}$£®

·ÖÎö £¨1£©ÔËÓôúÈë·¨£¬¼ÆËã¼´¿ÉµÃµ½ËùÇóa2£¬a3£»
£¨2£©ÓɵȲîÊýÁе͍Ò壬¿ÉµÃ$\frac{{a}_{2}-4k}{{a}_{2}-2}$-$\frac{{a}_{1}-k}{{a}_{1}-1}$=1£¬$\frac{{a}_{3}-9k}{{a}_{3}-3}$-$\frac{{a}_{2}-4k}{{a}_{2}-2}$=1£¬½â·½³Ì¿ÉµÃkµÄÖµ£»
£¨3£©ÔËÓõȲîÊýÁеÄͨÏʽ»¯¼ò¿ÉµÃan=$\frac{2n-{n}^{2}}{n+1}$£¬Çó³öbn=$\frac{1}{{{{£¨{\sqrt{3}}£©}^{n+2}}{a_{n+2}}}}$=$\frac{1}{£¨\sqrt{3}£©^{n+2}•\frac{-n£¨n+2£©}{n+3}}$=$\frac{1}{2}$[$\frac{1}{£¨\sqrt{3}£©^{n+2}£¨n+2£©}$-$\frac{1}{£¨\sqrt{3}£©^{n}n}$]£¬ÔËÓÃÁÑÏîÏàÏûÇóºÍ£¬ÇóµÃÊýÁÐ{bn}µÄǰnÏîºÍΪSn£¬ÔËÓò»µÈʽµÄÐÔÖʼ´¿ÉµÃÖ¤£®

½â´ð ½â£º£¨1£©ÊýÁÐ{an}Âú×ãa1=$\frac{1}{2}$£¬an+1=$\frac{{£¨{n+1}£©£¨{2{a_n}-n}£©}}{{{a_n}+4n}}$£¨n¡ÊN*£©£¬
¿ÉµÃa2=$\frac{2£¨2{a}_{1}-1£©}{{a}_{1}+4}$=0£»a3=$\frac{3£¨2{a}_{2}-2£©}{{a}_{2}+4}$=$\frac{3¡Á£¨0-2£©}{0+8}$=-$\frac{3}{4}$£»
£¨2£©ÊýÁÐ{$\frac{{a}_{n}-k{n}^{2}}{{a}_{n}-n}$}Ϊ¹«²îΪ1µÄµÈ²îÊýÁУ¬
¿ÉµÃ$\frac{{a}_{2}-4k}{{a}_{2}-2}$-$\frac{{a}_{1}-k}{{a}_{1}-1}$=1£¬¼´2k-$\frac{1-2k}{-1}$=1ºã³ÉÁ¢£»
ÓÉ$\frac{{a}_{3}-9k}{{a}_{3}-3}$-$\frac{{a}_{2}-4k}{{a}_{2}-2}$=1£¬¼´$\frac{-\frac{3}{4}-9k}{-\frac{3}{4}-3}$-2k=1£¬
½âµÃk=2£»
£¨3£©Ö¤Ã÷£ºÓÉ£¨2£©¿ÉµÃ$\frac{{a}_{n}-2{n}^{2}}{{a}_{n}-n}$=$\frac{\frac{1}{2}-2}{\frac{1}{2}-1}$+£¨n-1£©=n+2£¬
»¯¼ò¿ÉµÃan=$\frac{2n-{n}^{2}}{n+1}$£¬
bn=$\frac{1}{{{{£¨{\sqrt{3}}£©}^{n+2}}{a_{n+2}}}}$=$\frac{1}{£¨\sqrt{3}£©^{n+2}•\frac{-n£¨n+2£©}{n+3}}$
=-$\frac{n+3}{£¨\sqrt{3}£©^{n+2}n£¨n+2£©}$=$\frac{1}{2}$[$\frac{1}{£¨\sqrt{3}£©^{n+2}£¨n+2£©}$-$\frac{1}{£¨\sqrt{3}£©^{n}n}$]£¬
ÔòǰnÏîºÍΪSn=$\frac{1}{2}$[$\frac{1}{£¨\sqrt{3}£©^{3}•3}$-$\frac{1}{\sqrt{3}•1}$+$\frac{1}{£¨\sqrt{3}£©^{4}•4}$-$\frac{1}{£¨\sqrt{3}£©^{2}•2}$+$\frac{1}{£¨\sqrt{3}£©^{5}•5}$-$\frac{1}{£¨\sqrt{3}£©^{3}•3}$
+¡­+$\frac{1}{£¨\sqrt{3}£©^{n+1}£¨n+1£©}$-$\frac{1}{£¨\sqrt{3}£©^{n-1}£¨n-1£©}$+$\frac{1}{£¨\sqrt{3}£©^{n+2}£¨n+2£©}$-$\frac{1}{£¨\sqrt{3}£©^{n}n}$]
=$\frac{1}{2}$[$\frac{1}{£¨\sqrt{3}£©^{n+1}£¨n+1£©}$+$\frac{1}{£¨\sqrt{3}£©^{n+2}£¨n+2£©}$-$\frac{1}{\sqrt{3}}$-$\frac{1}{6}$]
£¾$\frac{1}{2}$£¨-$\frac{1}{\sqrt{3}}$-$\frac{1}{6}$£©=-$\frac{{2\sqrt{3}+1}}{12}$£®
¼´ÎªSn£¾-$\frac{{2\sqrt{3}+1}}{12}$£®

µãÆÀ ±¾Ì⿼²éµÈ²îÊýÁе͍ÒåºÍͨÏʽµÄÔËÓ㬿¼²é·½³Ì˼ÏëºÍÔËËãÄÜÁ¦£¬ÒÔ¼°ÁÑÏîÏàÏûÇóºÍ·½·¨£¬²»µÈʽµÄÐÔÖÊ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªº¯Êýf£¨x£©=4sin£¨x-$\frac{¦Ð}{3}$£©cosx+$\sqrt{3}$£®
£¨1£©Çóº¯Êýf£¨x£©µÄ×îСÖÜÆÚºÍµ¥µ÷µÝÔöÇø¼ä£»
£¨2£©Èôº¯Êýg£¨x£©=f£¨x£©-mÔÚ[0£¬$\frac{¦Ð}{2}$]ÉÏÓÐÁ½¸ö²»Í¬µÄÁãµãx1£¬x2£¬ÇóʵÊýmµÄȡֵ·¶Î§£¬²¢¼ÆËãtan£¨x1+x2£©µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ½¹¾àΪ2$\sqrt{2}$£¬ÇÒ¹ýµã$A£¨\frac{3}{2}£¬-\frac{1}{2}£©$£®
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©ÔÚÍÖÔ²CÉÏÒ»µãP£¬Ê¹Ëüµ½Ö±Ïßl£ºx+y+4=0µÄ¾àÀë×î¶Ì£¬ÇóµãP×ø±ê£»  ²¢Çó³ö×î¶Ì¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®¡÷ABCÖУ¬±ß³¤a¡¢bÊÇ·½³Ì${x^2}-2\sqrt{3}x+2=0$µÄÁ½¸ù£¬ÇÒ2cos£¨A+B£©=-1Ôò±ß³¤cµÈÓÚ£¨¡¡¡¡£©
A£®$\sqrt{2}$B£®$\sqrt{3}$C£®2D£®$\sqrt{6}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑÖªf£¨x£©=£¨-x2+x-1£©ex£¨eÊÇ×ÔÈ»¶ÔÊýµÄµ×Êý£©µÄͼÏóÓëg£¨x£©=$\frac{1}{3}$x3+$\frac{1}{2}$x2+mµÄͼÏóÓÐ3¸ö²»Í¬µÄ½»µã£¬ÔòmµÄȡֵ·¶Î§ÊÇ£¨$\frac{3}{e}$-$\frac{1}{6}$£¬-1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Å×ÎïÏßx=$\frac{1}{4m}$y2µÄ½¹µã×ø±êÊÇ£¨m£¬0£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÎªÁËÅжϸßÖÐÈýÄ꼶ѧÉúÊÇ·ñÑ¡ÐÞÎÄ¿ÆÓëÐÔ±ðµÄ¹ØÏµ£¬ÏÖËæ»ú³éÈ¡50ÃûѧÉú£¬µÃµ½Èç±íÊý¾Ý£º
Àí¿ÆÎÄ¿Æ
ÄÐ1310
Ů720
¸ù¾Ý±íÖÐÊý¾Ý£¬µÃµ½$k=\frac{{50¡Á{{£¨13¡Á20-10¡Á7£©}^2}}}{23¡Á27¡Á20¡Á30}¡Ö4.844$£¬
²ÎÕÕ¶ÀÁ¢ÐÔ¼ìÑéÁÙ½çÖµ±í£¬ÔòÈÏΪ¡°Ñ¡ÐÞÎÄ¿ÆÓëÐÔ±ðÓйØÏµ¡±³ö´íµÄ¿ÉÄÜÐÔ²»³¬¹ý0.05£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªÏòÁ¿$\overrightarrow a=£¨1£¬1£©£¬\overrightarrow b=£¨1£¬0£©£¬\overrightarrow c$Âú×ã$\overrightarrow a•\overrightarrow c=0$ÇÒ$|\overrightarrow a|=|\overrightarrow c|£¬\overrightarrow b•\overrightarrow c£¾0$£®
£¨1£©ÇóÏòÁ¿$\overrightarrow c$£»
£¨2£©Èô$\overrightarrow{OA}=\overrightarrow a£¬\overrightarrow{OC}=3\overrightarrow c$£¬µãP£¨x£¬4£©ÔÚÏß¶ÎACµÄ´¹Ö±Æ½·ÖÏßÉÏ£¬ÇóxµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ¶ÌÖ᳤Ϊ2£¬ÇÒº¯Êýy=x2-$\frac{65}{16}$µÄͼÏóÓëÍÖÔ²C½öÓÐÁ½¸ö¹«¹²µã£¬¹ýÔ­µãµÄÖ±ÏßlÓëÍÖÔ²C½»ÓÚM£¬NÁ½µã£®
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©µãPΪÏß¶ÎMNµÄÖд¹ÏßÓëÍÖÔ²CµÄÒ»¸ö¹«¹²µã£¬Çó¡÷PMNÃæ»ýµÄ×îСֵ£¬²¢Çó´ËʱֱÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸