精英家教网 > 高中数学 > 题目详情
17.已知f(x)=(-x2+x-1)ex(e是自然对数的底数)的图象与g(x)=$\frac{1}{3}$x3+$\frac{1}{2}$x2+m的图象有3个不同的交点,则m的取值范围是($\frac{3}{e}$-$\frac{1}{6}$,-1).

分析 令h(x)=f(x)-g(x),求出导数,求出单调区间,和极值,函数f(x),g(x)的图象有三个交点,即函数h(x)有3个不同的零点,即有h(-1)<0,且h(0)>0,解出即可.

解答 解:令h(x)=f(x)-g(x)=(-x2+x-1)ex-($\frac{1}{3}$x3+$\frac{1}{2}$x2+m),
则h′(x)=(-2x+1)ex+(-x2+x-1)ex-(x2+x)=-(ex+1)(x2+x),
令h′(x)>0得-1<x<0,令h′(x)<0得x>0或x<-1.
∴h(x)在x=-1处取得极小值h(-1)=-$\frac{3}{e}$-$\frac{1}{6}$-m,在x=0处取得极大值h(0)=-1-m,
∵函数f(x),g(x)的图象有三个交点,即函数h(x)有3个不同的零点,
∴$\left\{\begin{array}{l}{h(-1)<0}\\{h(0)>0}\end{array}\right.$即 $\left\{\begin{array}{l}{-\frac{3}{e}-\frac{1}{6}-m<0}\\{-1-m>0}\end{array}\right.$,
解得:-$\frac{3}{e}$-$\frac{1}{6}$<m<-1,
故答案为:($\frac{3}{e}$-$\frac{1}{6}$,-1).

点评 本题考查导数的运用:求单调区间、极值和最值,考查构造函数,运用导数求极值,考虑极值的正负来判断函数的零点,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知方程x2+bx+c=0有两个不等的实根x1,x2,设C={x1,x2},A={1,3,5,7,9},B={1,4,7,10},若A∩C=∅,C∩B=C,试求b、c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=3x+sinx-2cosx的图象在点A(x0,f(x0))处的切线斜率为3,则tanx0的值是(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\sqrt{3}$D.$-\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}中,a1=1,a2=a,且an+1=k(an+an+2)对任意正整数都成立,数列{an}的前n项和为Sn
(1)若k=$\frac{1}{2}$且S2017=2017a,求a
(2)是否存在实数k,使数列{an}是公比不为1的等比数列,且对任意相邻三项am,am+1,am+2按某顺序排列后成等差数列?若存在,求出所有的k值;若不存在,请说明理由;
(3)若k=-$\frac{1}{2}$,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)的图象如图所示,则f(x)的极大值点为(  )  
A.1B.2C.1.7D.2.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}满足a1=$\frac{1}{2}$,an+1=$\frac{{({n+1})({2{a_n}-n})}}{{{a_n}+4n}}$(n∈N*).
(1)求a2,a3
(2)已知存在实数k,使得数列{$\frac{{a}_{n}-k{n}^{2}}{{a}_{n}-n}$}为公差为1的等差数列,求k的值;
(3)记bn=$\frac{1}{{{{({\sqrt{3}})}^{n+2}}{a_{n+2}}}}$(n∈N*),数列{bn}的前n项和为Sn,求证:Sn>-$\frac{{2\sqrt{3}+1}}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.给定下列命题:
①“若m>-1,则方程x2+2x-m=0有实数根”的逆否命题;
②“x=1”是“x2-3x+2=0”的充分不必要条件;
③“矩形的对角线相等”的逆命题;
④“若x2+y2=0,则x,y全为零”的逆命题,
其中真命题的序号是①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数y=cos x(0≤x≤2π)的图象和直线y=1围成一个封闭的平面图形,则这个封闭图形的面积是2π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某高校大一新生中的6名同学打算参加学校组织的“雅荷文学社”、“青春风街舞社”、“羽乒协会“、”演讲团“、”吉他协会“五个社团.若每个同学必须参加且只能参加1个社团且每个社团至多两人参加,则这6个人中至多有1个参加”演讲团“的不同参加方法为(  )
A.4680B.4770C.5040D.5200

查看答案和解析>>

同步练习册答案