·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉµÃ£º2b=2£¬½âµÃb=1£®ÁªÁ¢$\frac{{x}^{2}}{{a}^{2}}$+y2=1£¨a£¾1£©Óëy=x2-$\frac{65}{16}$£¬¿ÉµÃ£ºx4+$£¨\frac{1}{{a}^{2}}-\frac{65}{8}£©$x2+$\frac{81¡Á49}{1{6}^{2}}$=0£¬¸ù¾ÝÍÖÔ²CÓëÅ×ÎïÏßy=x2-$\frac{65}{16}$µÄ¶Ô³ÆÐÔ£¬¿ÉµÃ£º¡÷=0£¬a£¾1£¬½âµÃa£®
£¨2£©¢Ùµ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬S¡÷PMN=$\frac{1}{2}¡Á2b¡Áa$£»µ±Ö±ÏßlµÄбÂÊΪ0ʱ£¬S¡÷PMN=$\frac{1}{2}¡Á2b¡Áa$£®
¢Úµ±Ö±ÏßlµÄбÂÊ´æÔÚÇÒ²»Îª0ʱ£¬ÉèÖ±ÏßlµÄ·½³ÌΪ£ºy=kx£¬ÓëÍÖÔ²·½³ÌÁªÁ¢½âµÃx2£¬y2£®|MN|=2$\sqrt{{x}^{2}+{y}^{2}}$£®ÓÉÌâÒâ¿ÉµÃ£ºÏß¶ÎMNµÄÖд¹Ïß·½³ÌΪ£ºy=-$\frac{1}{k}$x£¬ÓëÍÖÔ²·½³ÌÁªÁ¢¿ÉµÃ|OP|=$\sqrt{{x}^{2}+{y}^{2}}$£®ÀûÓÃS¡÷PMN=$\frac{1}{2}¡Á$|MN|¡Á|OP|£¬Óë»ù±¾²»µÈʽµÄÐÔÖʼ´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ£º2b=2£¬½âµÃb=1£®ÁªÁ¢$\frac{{x}^{2}}{{a}^{2}}$+y2=1£¨a£¾1£©Óëy=x2-$\frac{65}{16}$£¬¿ÉµÃ£ºx4+$£¨\frac{1}{{a}^{2}}-\frac{65}{8}£©$x2+$\frac{81¡Á49}{1{6}^{2}}$=0£¬
¸ù¾ÝÍÖÔ²CÓëÅ×ÎïÏßy=x2-$\frac{65}{16}$µÄ¶Ô³ÆÐÔ£¬¿ÉµÃ£º¡÷=$£¨\frac{1}{{a}^{2}}-\frac{65}{8}£©^{2}$-4¡Á$\frac{81¡Á49}{1{6}^{2}}$=0£¬a£¾1£¬½âµÃa=2£®
¡àÍÖÔ²CµÄ±ê×¼·½³ÌΪ£º$\frac{{x}^{2}}{4}$+y2=1£®
£¨2£©¢Ùµ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬S¡÷PMN=$\frac{1}{2}¡Á2b¡Áa$=2£»
µ±Ö±ÏßlµÄбÂÊΪ0ʱ£¬S¡÷PMN=$\frac{1}{2}¡Á2b¡Áa$=2£»
¢Úµ±Ö±ÏßlµÄбÂÊ´æÔÚÇÒ²»Îª0ʱ£®
ÉèÖ±ÏßlµÄ·½³ÌΪ£ºy=kx£¬ÓÉ$\left\{\begin{array}{l}{y=kx}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$£¬½âµÃx2=$\frac{4}{1+4{k}^{2}}$£¬y2=$\frac{4{k}^{2}}{1+4{k}^{2}}$£®
¡à|MN|=2$\sqrt{{x}^{2}+{y}^{2}}$=4$\sqrt{\frac{1+{k}^{2}}{1+4{k}^{2}}}$£®
ÓÉÌâÒâ¿ÉµÃ£ºÏß¶ÎMNµÄÖд¹Ïß·½³ÌΪ£ºy=-$\frac{1}{k}$x£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=-\frac{1}{k}x}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$£¬¿ÉµÃx2=$\frac{4{k}^{2}}{{k}^{2}+4}$£¬y2=$\frac{4}{{k}^{2}+4}$£®
¡à|OP|=$\sqrt{{x}^{2}+{y}^{2}}$=2$\sqrt{\frac{1+{k}^{2}}{{k}^{2}+4}}$£®
S¡÷PMN=$\frac{1}{2}¡Á$|MN|¡Á|OP|=$\frac{4£¨1+{k}^{2}£©}{\sqrt{£¨1+4{k}^{2}£©£¨{k}^{2}+4£©}}$¡Ý$\frac{4£¨1+{k}^{2}£©}{\frac{£¨1+4{k}^{2}£©+£¨{k}^{2}+4£©}{2}}$=$\frac{8}{5}$£¬µ±ÇÒ½öµ±k=¡À1ʱȡµÈºÅ£¬´Ëʱ¡÷PMNµÄÃæ»ýµÄ×îСֵΪ$\frac{8}{5}$£®
¡ß$2£¾\frac{8}{5}$£¬¡à¡÷PMNµÄÃæ»ýµÄ×îСֵΪ$\frac{8}{5}$£¬Ö±ÏßlµÄ·½³ÌΪ£ºy=¡Àx£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ò»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµ¡¢»ù±¾²»µÈʽµÄÐÔÖÊ¡¢ÏÒ³¤¹«Ê½£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 4+6i | B£® | 4+2i | C£® | -4-2i | D£® | -2+2i£® |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 4680 | B£® | 4770 | C£® | 5040 | D£® | 5200 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 2 | B£® | $\frac{8}{3}$ | C£® | $\frac{6}{5}$ | D£® | $\frac{12}{25}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{16}{5}$ | B£® | $\frac{16}{5}$i | C£® | $\frac{18}{5}$ | D£® | $\frac{18}{5}$i |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨$\frac{{e}^{2}}{2e-1}$£¬+¡Þ£© | B£® | £¨e£¬+¡Þ£© | C£® | £¨1£¬e£© | D£® | £¨1£¬$\frac{{e}^{2}}{2e-1}$£© |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com