12£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ¶ÌÖ᳤Ϊ2£¬ÇÒº¯Êýy=x2-$\frac{65}{16}$µÄͼÏóÓëÍÖÔ²C½öÓÐÁ½¸ö¹«¹²µã£¬¹ýÔ­µãµÄÖ±ÏßlÓëÍÖÔ²C½»ÓÚM£¬NÁ½µã£®
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©µãPΪÏß¶ÎMNµÄÖд¹ÏßÓëÍÖÔ²CµÄÒ»¸ö¹«¹²µã£¬Çó¡÷PMNÃæ»ýµÄ×îСֵ£¬²¢Çó´ËʱֱÏßlµÄ·½³Ì£®

·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉµÃ£º2b=2£¬½âµÃb=1£®ÁªÁ¢$\frac{{x}^{2}}{{a}^{2}}$+y2=1£¨a£¾1£©Óëy=x2-$\frac{65}{16}$£¬¿ÉµÃ£ºx4+$£¨\frac{1}{{a}^{2}}-\frac{65}{8}£©$x2+$\frac{81¡Á49}{1{6}^{2}}$=0£¬¸ù¾ÝÍÖÔ²CÓëÅ×ÎïÏßy=x2-$\frac{65}{16}$µÄ¶Ô³ÆÐÔ£¬¿ÉµÃ£º¡÷=0£¬a£¾1£¬½âµÃa£®
£¨2£©¢Ùµ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬S¡÷PMN=$\frac{1}{2}¡Á2b¡Áa$£»µ±Ö±ÏßlµÄбÂÊΪ0ʱ£¬S¡÷PMN=$\frac{1}{2}¡Á2b¡Áa$£®
¢Úµ±Ö±ÏßlµÄбÂÊ´æÔÚÇÒ²»Îª0ʱ£¬ÉèÖ±ÏßlµÄ·½³ÌΪ£ºy=kx£¬ÓëÍÖÔ²·½³ÌÁªÁ¢½âµÃx2£¬y2£®|MN|=2$\sqrt{{x}^{2}+{y}^{2}}$£®ÓÉÌâÒâ¿ÉµÃ£ºÏß¶ÎMNµÄÖд¹Ïß·½³ÌΪ£ºy=-$\frac{1}{k}$x£¬ÓëÍÖÔ²·½³ÌÁªÁ¢¿ÉµÃ|OP|=$\sqrt{{x}^{2}+{y}^{2}}$£®ÀûÓÃS¡÷PMN=$\frac{1}{2}¡Á$|MN|¡Á|OP|£¬Óë»ù±¾²»µÈʽµÄÐÔÖʼ´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ£º2b=2£¬½âµÃb=1£®ÁªÁ¢$\frac{{x}^{2}}{{a}^{2}}$+y2=1£¨a£¾1£©Óëy=x2-$\frac{65}{16}$£¬¿ÉµÃ£ºx4+$£¨\frac{1}{{a}^{2}}-\frac{65}{8}£©$x2+$\frac{81¡Á49}{1{6}^{2}}$=0£¬
¸ù¾ÝÍÖÔ²CÓëÅ×ÎïÏßy=x2-$\frac{65}{16}$µÄ¶Ô³ÆÐÔ£¬¿ÉµÃ£º¡÷=$£¨\frac{1}{{a}^{2}}-\frac{65}{8}£©^{2}$-4¡Á$\frac{81¡Á49}{1{6}^{2}}$=0£¬a£¾1£¬½âµÃa=2£®
¡àÍÖÔ²CµÄ±ê×¼·½³ÌΪ£º$\frac{{x}^{2}}{4}$+y2=1£®
£¨2£©¢Ùµ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬S¡÷PMN=$\frac{1}{2}¡Á2b¡Áa$=2£»
µ±Ö±ÏßlµÄбÂÊΪ0ʱ£¬S¡÷PMN=$\frac{1}{2}¡Á2b¡Áa$=2£»
¢Úµ±Ö±ÏßlµÄбÂÊ´æÔÚÇÒ²»Îª0ʱ£®
ÉèÖ±ÏßlµÄ·½³ÌΪ£ºy=kx£¬ÓÉ$\left\{\begin{array}{l}{y=kx}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$£¬½âµÃx2=$\frac{4}{1+4{k}^{2}}$£¬y2=$\frac{4{k}^{2}}{1+4{k}^{2}}$£®
¡à|MN|=2$\sqrt{{x}^{2}+{y}^{2}}$=4$\sqrt{\frac{1+{k}^{2}}{1+4{k}^{2}}}$£®
ÓÉÌâÒâ¿ÉµÃ£ºÏß¶ÎMNµÄÖд¹Ïß·½³ÌΪ£ºy=-$\frac{1}{k}$x£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=-\frac{1}{k}x}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$£¬¿ÉµÃx2=$\frac{4{k}^{2}}{{k}^{2}+4}$£¬y2=$\frac{4}{{k}^{2}+4}$£®
¡à|OP|=$\sqrt{{x}^{2}+{y}^{2}}$=2$\sqrt{\frac{1+{k}^{2}}{{k}^{2}+4}}$£®
S¡÷PMN=$\frac{1}{2}¡Á$|MN|¡Á|OP|=$\frac{4£¨1+{k}^{2}£©}{\sqrt{£¨1+4{k}^{2}£©£¨{k}^{2}+4£©}}$¡Ý$\frac{4£¨1+{k}^{2}£©}{\frac{£¨1+4{k}^{2}£©+£¨{k}^{2}+4£©}{2}}$=$\frac{8}{5}$£¬µ±ÇÒ½öµ±k=¡À1ʱȡµÈºÅ£¬´Ëʱ¡÷PMNµÄÃæ»ýµÄ×îСֵΪ$\frac{8}{5}$£®
¡ß$2£¾\frac{8}{5}$£¬¡à¡÷PMNµÄÃæ»ýµÄ×îСֵΪ$\frac{8}{5}$£¬Ö±ÏßlµÄ·½³ÌΪ£ºy=¡Àx£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ò»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµ¡¢»ù±¾²»µÈʽµÄÐÔÖÊ¡¢ÏÒ³¤¹«Ê½£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªÊýÁÐ{an}Âú×ãa1=$\frac{1}{2}$£¬an+1=$\frac{{£¨{n+1}£©£¨{2{a_n}-n}£©}}{{{a_n}+4n}}$£¨n¡ÊN*£©£®
£¨1£©Çóa2£¬a3£»
£¨2£©ÒÑÖª´æÔÚʵÊýk£¬Ê¹µÃÊýÁÐ{$\frac{{a}_{n}-k{n}^{2}}{{a}_{n}-n}$}Ϊ¹«²îΪ1µÄµÈ²îÊýÁУ¬ÇókµÄÖµ£»
£¨3£©¼Çbn=$\frac{1}{{{{£¨{\sqrt{3}}£©}^{n+2}}{a_{n+2}}}}$£¨n¡ÊN*£©£¬ÊýÁÐ{bn}µÄǰnÏîºÍΪSn£¬ÇóÖ¤£ºSn£¾-$\frac{{2\sqrt{3}+1}}{12}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªº¯Êýy=1-3sinx
£¨1£©»­³öÉÏÊöº¯ÊýµÄͼÏó
£¨2£©ÇóÉÏÊöº¯ÊýµÄ×î´óÖµ¡¢×îСֵºÍÖÜÆÚ£¬²¢ÇóÕâ¸öº¯ÊýÈ¡×î´óÖµ¡¢×îСֵµÄxÖµµÄ¼¯ºÏ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Èô¸´ÊýzÂú×㣨3-4i+z£©i=2+i£¬Ôòz=£¨¡¡¡¡£©
A£®4+6iB£®4+2iC£®-4-2iD£®-2+2i£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Ä³¸ßУ´óÒ»ÐÂÉúÖеÄ6Ãûͬѧ´òËã²Î¼ÓѧУ×éÖ¯µÄ¡°ÑźÉÎÄѧÉ硱¡¢¡°Çà´º·ç½ÖÎèÉ硱¡¢¡°ÓðƹЭ»á¡°¡¢¡±Ñݽ²ÍÅ¡°¡¢¡±¼ªËûЭ»á¡°Îå¸öÉçÍÅ£®Èôÿ¸öͬѧ±ØÐë²Î¼ÓÇÒÖ»ÄܲμÓ1¸öÉçÍÅÇÒÿ¸öÉçÍÅÖÁ¶àÁ½È˲μӣ¬ÔòÕâ6¸öÈËÖÐÖÁ¶àÓÐ1¸ö²Î¼Ó¡±Ñݽ²ÍÅ¡°µÄ²»Í¬²Î¼Ó·½·¨Îª£¨¡¡¡¡£©
A£®4680B£®4770C£®5040D£®5200

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Èçͼ£¬Õý·½ÐÎABCDÖУ¬P£¬Q·Ö±ðÊDZßBC£¬CDµÄÖе㣬Èô$\overrightarrow{AC}$=x$\overrightarrow{AP}$+y$\overrightarrow{BQ}$£¬Ôòxy=£¨¡¡¡¡£©
A£®2B£®$\frac{8}{3}$C£®$\frac{6}{5}$D£®$\frac{12}{25}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®É踴Êýz=3+4i£¬Ôò¸´Êýz+$\frac{|z|}{z}$µÄÐ鲿Ϊ£¨¡¡¡¡£©
A£®$\frac{16}{5}$B£®$\frac{16}{5}$iC£®$\frac{18}{5}$D£®$\frac{18}{5}$i

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÔڵȲîÊýÁÐ{an}ÖУ¬S4=4£¬S8=12£¬ÔòS12=24£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®Èô¹ØÓÚxµÄ·½³Ì£¨x-2£©2ex+ae-x=2a|x-2|£¨eΪ×ÔÈ»¶ÔÊýµÄµ×Êý£©ÓÐÇÒ½öÓÐ6¸ö²»µÈµÄʵÊý½â£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨$\frac{{e}^{2}}{2e-1}$£¬+¡Þ£©B£®£¨e£¬+¡Þ£©C£®£¨1£¬e£©D£®£¨1£¬$\frac{{e}^{2}}{2e-1}$£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸