分析 (1)利用和与差以及辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,再利用周期公式求函数的最小正周期,最后将内层函数看作整体,放到正弦函数的增区间上,解不等式得函数的单调递增区间;
(2)函数g(x)=f(x)-m所在[0,$\frac{π}{2}$]匀上有两个不同的零点x1,x2,转化为函数f(x)与函数y=m有两个交点;可求m的范围,结合三角函数的图象可知,x1,x2,关于对称轴是对称的,可知x1+x2,即可求tan(x1+x2)的值.
解答
解:函数f(x)=4sin(x-$\frac{π}{3}$)cosx+$\sqrt{3}$,
化简可得:f(x)=2sinxcosx-2$\sqrt{3}$cos2x+$\sqrt{3}$=sin2x-2$\sqrt{3}$($\frac{1}{2}$+$\frac{1}{2}$cos2x)+$\sqrt{3}$=sin2x-$\sqrt{3}$cos2x
=2sin(2x-$\frac{π}{3}$).
(1)函数的最小正周期T=$\frac{2π}{2}$=π,
由2kπ-$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,
解得:kπ-$\frac{π}{12}$≤x≤kπ+$\frac{5π}{12}$,
∴函数的单调递增区间为[:kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈Z.
(2)函数g(x)=f(x)-m所在[0,$\frac{π}{2}$]匀上有两个不同的零点x1′,x2′,转化为函数f(x)与函数y=m有两个交点
令u=2x-$\frac{π}{3}$,∵x∈[0,$\frac{π}{2}$],
∴u∈[-$\frac{π}{3}$,$\frac{2π}{3}$]
可得f(x)=sinu的图象(如图).
从图可知:m∈[$\sqrt{3}$,2)时,函数f(x)与函数y=m有两个交点,其横坐标分别为x1′,x2′.
故得实数m的取值范围是m∈[$\sqrt{3}$,2),
由题意可知x1′,x2′是关于对称轴是对称的:
那么函数在[0,$\frac{π}{2}$]的对称轴x=$\frac{5π}{12}$,
∴x1′+x2′=$\frac{5π}{12}$那么:tan(x1′+x2′)=tan$\frac{5π}{12}$=tan($\frac{π}{6}$+$\frac{π}{4}$)=$\frac{tan\frac{π}{6}+tan\frac{π}{4}}{1-tan\frac{π}{6}tan\frac{π}{4}}$=$\frac{3+\sqrt{3}}{3-\sqrt{3}}$.
点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用三角函数公式将函数进行化简是解决本题的关键.属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|-1<x<1} | B. | {x|x>-1} | C. | {x|x<-1或x>1} | D. | {x|x>1} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com