精英家教网 > 高中数学 > 题目详情
4.设函数f(x)=sin(2x-$\frac{3π}{4}$)
(1)画出函数y=f(x)在区间[0,π]上的图象.
(2)求函数f(x)=sin(2x-$\frac{3π}{4}$)的周期、对称轴、对称中心,单调区间.

分析 (1)由已知利用五点作图法即可.
(2)利用正弦函数的图象和性质即可得解.

解答 (本题满分为12分)
 解:(1)由(1)知f(x)=sin(2x-$\frac{3π}{4}$),列表如下:

x0$\frac{π}{8}$$\frac{3π}{8}$$\frac{5π}{8}$$\frac{7π}{8}$π
y-$\frac{\sqrt{2}}{2}$-1010-$\frac{\sqrt{2}}{2}$
描点连线,可得函数y=f(x)在区间[0,π]上的图象如下.

(2)∵f(x)=sin(2x-$\frac{3π}{4}$),
∴周期T=$\frac{2π}{2}$=π,
令2x-$\frac{3π}{4}$=kπ+$\frac{π}{2}$,k∈Z,解得对称轴为$\{x/x=\frac{5}{8}π+\frac{kπ}{2},k∈z\}$.
令2x-$\frac{3π}{4}$=kπ,k∈Z,解得x=$\frac{kπ}{2}$+$\frac{3π}{8}$,k∈Z,可得对称中心为$(\frac{3π}{8}+\frac{kπ}{2},0)k∈z$,
令-$\frac{π}{2}$+2kπ≤2x-$\frac{3π}{4}$≤$\frac{π}{2}$+2kπ,k∈Z,解得单调增区间为$[\frac{π}{8}+kπ,\frac{5π}{8}+kπ],k∈z$,
令$\frac{π}{2}$+2kπ≤2x-$\frac{3π}{4}$≤$\frac{3π}{2}$+2kπ,k∈Z,解得单调减区间为$[\frac{5π}{8}+kπ,\frac{9π}{8}+kπ],k∈z$.

点评 本题主要考查了五点作图法及正弦函数的图象和性质的应用,考查了数形结合思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.用数学归纳法证明1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{2n-1}$<n(n∈N*,n>1),第一步应验证不等式(  )
A.1+$\frac{1}{2}$<2B.1+$\frac{1}{2}$+$\frac{1}{3}$<3C.1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$<3D.1+$\frac{1}{2}$+$\frac{1}{3}$<2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,正方形ABCD的边长为1,E是CD边外的一点,满足:CE∥BD,BE=BD,则CE=$\frac{\sqrt{6}-\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=4sin(x-$\frac{π}{3}$)cosx+$\sqrt{3}$.
(1)求函数f(x)的最小周期和单调递增区间;
(2)若函数g(x)=f(x)-m在[0,$\frac{π}{2}$]上有两个不同的零点x1,x2,求实数m的取值范围,并计算tan(x1+x2)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如表提供了工厂技术改造后某种型号设备的使用年限x和所支出的维修费用y(万元)的几组对照数据:
x(年)  3       4     5   6
y(万元)    2.5    3    4  4.5 
(1)若知道y对x呈线性相关关系,请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\stackrel{∧}{y}$=bx+a
(2)已知工厂技改前该型号设备使用10年的维修费用为9万元.试根据(1)求出的线性回归方程,预测该型号设备技改后使用10年的维修费用比技改前降低多少?
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=y-$\stackrel{∧}{b}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,函数y=-x2+2x+1与y=1相交形成一个封闭图形(图中的阴影部分),则该封闭图形的面积是$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知直线l:(2k+1)x+(k-1)y-(4k-1)=0(k∈R)与圆C:x2+y2-4x-2y+1=0交于A,B两点.
(1)求|AB|最小时直线l的方程,并求此时|AB|的值;
(2)求过点P(4,4)的圆C的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2$\sqrt{2}$,且过点$A(\frac{3}{2},-\frac{1}{2})$.
(1)求椭圆的方程;
(2)在椭圆C上一点P,使它到直线l:x+y+4=0的距离最短,求点P坐标;  并求出最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如表数据:
理科文科
1310
720
根据表中数据,得到$k=\frac{{50×{{(13×20-10×7)}^2}}}{23×27×20×30}≈4.844$,
参照独立性检验临界值表,则认为“选修文科与性别有关系”出错的可能性不超过0.05.

查看答案和解析>>

同步练习册答案