精英家教网 > 高中数学 > 题目详情
9.如图,函数y=-x2+2x+1与y=1相交形成一个封闭图形(图中的阴影部分),则该封闭图形的面积是$\frac{4}{3}$.

分析 本题考查的知识点是定积分的几何意义,首先我们要联立两个曲线的方程,判断他们的交点,以确定积分公式中x的取值范围,再根据定积分的几何意义,所求图形的面积为S=∫02(-x2+2x+1)dx-∫021dx,计算后即得答案.

解答 解:函数y=-x2+2x+1与y=1的两个交点为(0,1)和(2,1),
所以封闭图形的面积等于S=∫02(-x2+2x+1)dx-∫021dx
=∫02(-x2+2x+1-1)dx
=∫02(-x2+2x)dx
=(-$\frac{1}{3}{x}^{3}$+x2)|${\;}_{0}^{2}$=-$\frac{8}{3}$+4=$\frac{4}{3}$.
故答案为:$\frac{4}{3}$

点评 在直角坐标系下平面图形的面积的四个步骤:1.作图象;2.求交点;3.用定积分表示所求的面积;4.微积分基本定理求定积分.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.己知双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的离心率为$\frac{\sqrt{5}}{2}$,F1,F2时双曲线的两个焦点,A为左顶点、B(0,b),点P在线段AB上,则$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$的最小值为-$\frac{21}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,将OA=6,AB=4的矩形OABC放置在平面直角坐标系中,动点M,N以每秒1个单位的速度分别从点A,C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP.
(1)点B的坐标为(6,4);用含t的式子表示点P的坐标为($t,\frac{2}{3}t$);
(2)记△OMP的面积为S,求S与t的函数关系式(0<t<6);并求t为何值时,S有最大值?
(3)试探究:当S有最大值时,在y轴上是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC面积的$\frac{1}{3}$?若存在,求出点T的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设数列{an}的前n项和Sn=2an-a1,且a1,a2+1,a3成等差数列.
(1)求数列{an}的通项公式;
(2)设 bn=log2an,${c_n}=\frac{3}{{{b_n}{b_{n+1}}}}$,记数列 {cn}的前n项和Tn,若 ${T_n}<\frac{m}{3}$对所有的正整数 n都成立,求最小正整数 m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=sin(2x-$\frac{3π}{4}$)
(1)画出函数y=f(x)在区间[0,π]上的图象.
(2)求函数f(x)=sin(2x-$\frac{3π}{4}$)的周期、对称轴、对称中心,单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)已知O是△ABC内任意一点,连接AO,BO,CO并延长交对边于A′,B′,C′,则$\frac{{O{A^'}}}{{A{A^'}}}+\frac{{O{B^'}}}{{B{B^'}}}+\frac{{O{C^'}}}{{C{C^'}}}=1$,这是一道平面几何题,其证明常采用“面积法”:$\frac{{O{A^'}}}{{A{A^'}}}+\frac{{O{B^'}}}{{B{B^'}}}+\frac{{O{C^'}}}{{C{C^'}}}=\frac{{{S_{△OBC}}}}{{{S_{△ABC}}}}+\frac{{{S_{△OCA}}}}{{{S_{△ABC}}}}+\frac{{{S_{△OAB}}}}{{{S_{△ABC}}}}=1$.
请运用类比思想,对于空间中的四面体A-BCD,存在什么类似的结论?并用体积法证明.
(2)已知0<x<2,0<y<2,0<z<2,求证:x(2-y),y(2-z),z(2-x)不都大于1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)(x∈R)满足f(1)=1,且$f'(x)<\frac{1}{2}$,则$f(x)<\frac{x}{2}+\frac{1}{2}$的解集为(  )
A.{x|-1<x<1}B.{x|x>-1}C.{x|x<-1或x>1}D.{x|x>1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若变量x,y满足约束条件$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-3≥0}\\{x-3≤0}\end{array}\right.$,则z=x-2y的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,a,b,c分别为角A,B,C所对的边,若(a-b+c)(a+b+c)=3ac,则B=$\frac{π}{3}$.

查看答案和解析>>

同步练习册答案