精英家教网 > 高中数学 > 题目详情
19.在△ABC中,a,b,c分别为角A,B,C所对的边,若(a-b+c)(a+b+c)=3ac,则B=$\frac{π}{3}$.

分析 由条件利用平方差公式化简可得ac=a2+c2-b2,再利用余弦定理求得cosB的值,结合B的范围即可得解B的值.

解答 解:∵△ABC中,(a-b+c)(a+b+c)=3ac,
∴解得:ac=a2+c2-b2
可得cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{ac}{2ac}$=$\frac{1}{2}$,
∵B∈(0,π),
∴B=$\frac{π}{3}$.
故答案为:$\frac{π}{3}$.

点评 本题主要考查平方差公式、余弦定理的应用,根据三角函数的值求角,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.如图,函数y=-x2+2x+1与y=1相交形成一个封闭图形(图中的阴影部分),则该封闭图形的面积是$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.△ABC中,边长a、b是方程${x^2}-2\sqrt{3}x+2=0$的两根,且2cos(A+B)=-1则边长c等于(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.抛物线x=$\frac{1}{4m}$y2的焦点坐标是(m,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如表数据:
理科文科
1310
720
根据表中数据,得到$k=\frac{{50×{{(13×20-10×7)}^2}}}{23×27×20×30}≈4.844$,
参照独立性检验临界值表,则认为“选修文科与性别有关系”出错的可能性不超过0.05.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.观察如表:
1,
2,3,
4,5,6,7,
8,9,10,11,12,13,14,15,

问:(1)此表第n行的最后一个数是多少?
(2)此表第n行的各个数之和是多少?
(3)2 018是第几行的第几个数?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知向量$\overrightarrow a=(1,1),\overrightarrow b=(1,0),\overrightarrow c$满足$\overrightarrow a•\overrightarrow c=0$且$|\overrightarrow a|=|\overrightarrow c|,\overrightarrow b•\overrightarrow c>0$.
(1)求向量$\overrightarrow c$;
(2)若$\overrightarrow{OA}=\overrightarrow a,\overrightarrow{OC}=3\overrightarrow c$,点P(x,4)在线段AC的垂直平分线上,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知椭圆C1:$\frac{x^2}{a_1^2}+\frac{y^2}{b_1^2}=1({a_1}>{b_1}>0)$,双曲线C2:$\frac{x^2}{a_1^2}-\frac{y^2}{b_1^2}=1({a_2}>0,{b_2}>0)$,以C1的短轴为一条最长对角线的正六边形与x轴正半轴交于点M,F为椭圆右焦点,A为椭圆右顶点,B为直线$x=\frac{a_1^2}{c_1}$与x轴的交点,且满足|OM|是|OA|与|OF|的等差中项,现将坐标平面沿y轴折起,当所成二面角为60°时,点A,B在另一半平面内的射影恰为C2的左顶点与左焦点,则C2的离心率为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1)的长轴长是短轴长的2倍,右焦点为F,点B,C分别是该椭圆的上、下顶点,点P是直线l:y=-2上的一个动点(与y轴交点除外),直线PC交椭圆于另一点M.记直线BM,BP的斜率分别为k1、k2
(1)当直线PM过点F时,求$\overrightarrow{PB}•\overrightarrow{PM}$的值;
(2)求|k1|+|k2|的最小值.

查看答案和解析>>

同步练习册答案