精英家教网 > 高中数学 > 题目详情
4.观察如表:
1,
2,3,
4,5,6,7,
8,9,10,11,12,13,14,15,

问:(1)此表第n行的最后一个数是多少?
(2)此表第n行的各个数之和是多少?
(3)2 018是第几行的第几个数?

分析 (1)通过观察特殊行得出规律,可判断此表第n行数的规律.
(2)运用等差数列的求和公式求解.
(3)先运用公式判断是第几行的数,再判断是第几个数.

解答 解:此表n行的第1个数为2n-1第n行共有2n-1个数,依次构成公差为1的等差数列.
(1)通过观察前几行得出规律可判断:第n+1行的第一个数是2n
∴第n行的最后一个数是2n-1+(2n-1-1)×1=2n-1.
(2)2n-1+(2n-1+1)+(2n-1+2)+…+(2n-1)=$\frac{[{2}^{n-1}+({2}^{n}-1)]×{2}^{n-1}}{2}$=3•22n-3-2n-2
(3)设2018在此数表的第n行.则2n-1≤2018≤2n-1可得n=11
故2018在此数表的第11行.
设2018是此数表的第11行的第m个数,而第11行的第1个数为210
因此,2018是第11行的第995个数.

点评 本题主要考查了等差数列的通项公式,以及等差数列的求和,同时考查了分析问题、解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.(1)已知O是△ABC内任意一点,连接AO,BO,CO并延长交对边于A′,B′,C′,则$\frac{{O{A^'}}}{{A{A^'}}}+\frac{{O{B^'}}}{{B{B^'}}}+\frac{{O{C^'}}}{{C{C^'}}}=1$,这是一道平面几何题,其证明常采用“面积法”:$\frac{{O{A^'}}}{{A{A^'}}}+\frac{{O{B^'}}}{{B{B^'}}}+\frac{{O{C^'}}}{{C{C^'}}}=\frac{{{S_{△OBC}}}}{{{S_{△ABC}}}}+\frac{{{S_{△OCA}}}}{{{S_{△ABC}}}}+\frac{{{S_{△OAB}}}}{{{S_{△ABC}}}}=1$.
请运用类比思想,对于空间中的四面体A-BCD,存在什么类似的结论?并用体积法证明.
(2)已知0<x<2,0<y<2,0<z<2,求证:x(2-y),y(2-z),z(2-x)不都大于1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知a=log23,b=${log_{\frac{1}{2}}}3$,c=3${\;}^{\frac{1}{2}}$,则(  )
A.c>b>aB.c>a>bC.a>b>cD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.“渐升数”是指正整数中每个数字比其左边的数字大的数,如:24578,则五位“渐升数”共有126个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,a,b,c分别为角A,B,C所对的边,若(a-b+c)(a+b+c)=3ac,则B=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若数列{an}是正项数列,且$\sqrt{a_1}+\sqrt{a_2}+\sqrt{a_3}+…+\sqrt{a_n}={n^2}+n$,则$\frac{a_1}{1}+\frac{a_2}{2}+…+\frac{a_n}{n}$=2n2+2n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知p:实数x满足x2-4ax+3a2<0(a>0),q:实数x满足|x-3|>1,若p是q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的前n项和为Sn,且Sn=2an-2(n∈N*).
(1)求{an}的通项公式;
(2)设${b_{n+1}}=2{b_n}-{2^{n+1}}$,b1=8,Tn是数列{bn}的前n项和,求正整数k,使得对任意n∈N*均有Tk≥Tn恒成立;
(3)设${c_n}=\frac{{{a_{\;n\;+\;1}}}}{{(1+{a_n})(1+{a_{\;n\;+\;1}})}}$,Rn是数列{cn}的前n项和,若对任意n∈N*均有Rn<λ恒成立,求λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)=\frac{1}{3}{x^3}-{x^2}-3x$有两个极值点x1,x2,且x1<x2,记点M(x1,f(x1)),N(x2,f(x2)).
(Ⅰ)求直线MN的方程;
(Ⅱ)证明:线段MN与曲线y=f(x)有且只有一个异于M、N的公共点.

查看答案和解析>>

同步练习册答案