分析 利用已知条件求出通项公式,然后化简所求的表达式的通项公式求解数列的和即可.
解答 解:数列{an}是正项数列,且$\sqrt{a_1}+\sqrt{a_2}+\sqrt{a_3}+…+\sqrt{a_n}={n^2}+n$,a1=4.
可得$\sqrt{{a}_{1}}+\sqrt{{a}_{2}}+…+\sqrt{{a}_{n-1}}=(n-1)^{2}+(n-1)$,
两式相减可得:$\sqrt{{a}_{n}}=2n$,即an=4n2,
$\frac{{a}_{n}}{n}$=4n,
则$\frac{a_1}{1}+\frac{a_2}{2}+…+\frac{a_n}{n}$=4(1+2+3+…+n)=2n2+2n.
当n=1时,命题也成立.
故答案为:2n2+2n.
点评 本题考查数列通项公式的应用,数列求和,考查计算能力.
科目:高中数学 来源: 题型:选择题
| A. | Χ2越大,“X与Y有关系”可信程度越小 | |
| B. | Χ2越小,“X与Y有关系”可信程度越小 | |
| C. | Χ2越接近0,“X与Y无关”程度越小 | |
| D. | Χ2越大,“X与Y无关”程度越大 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | -$\frac{1}{5}$ | C. | -$\frac{2}{5}$ | D. | $\frac{2}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | k=-6 | B. | k=6 | C. | k=$\frac{1}{2}$ | D. | k=-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [3,+∞) | B. | [4,+∞) | C. | (-∞,3] | D. | (-∞,4] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com