精英家教网 > 高中数学 > 题目详情
16.已知p:实数x满足x2-4ax+3a2<0(a>0),q:实数x满足|x-3|>1,若p是q的充分不必要条件,求实数a的取值范围.

分析 分别化简解出p,q,再利用p是q的充分不必要条件,即可得出.

解答 解:p:实数x满足x2-4ax+3a2<0(a>0),解得:a<x<3a.
q:实数x满足|x-3|>1,解得x>4或x<2.
若p是q的充分不必要条件,则a≥4或$\left\{\begin{array}{l}{a>0}\\{3a<2}\end{array}\right.$,
解得a≥4,或$0<a≤\frac{2}{3}$.
∴实数a的取值范围是a≥4,或$0<a≤\frac{2}{3}$.

点评 本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.曲线y=ex在点A处的切线与直线x-y+3=0平行,则点A的坐标为(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.抛物线x=$\frac{1}{4m}$y2的焦点坐标是(m,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.观察如表:
1,
2,3,
4,5,6,7,
8,9,10,11,12,13,14,15,

问:(1)此表第n行的最后一个数是多少?
(2)此表第n行的各个数之和是多少?
(3)2 018是第几行的第几个数?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知向量$\overrightarrow a=(1,1),\overrightarrow b=(1,0),\overrightarrow c$满足$\overrightarrow a•\overrightarrow c=0$且$|\overrightarrow a|=|\overrightarrow c|,\overrightarrow b•\overrightarrow c>0$.
(1)求向量$\overrightarrow c$;
(2)若$\overrightarrow{OA}=\overrightarrow a,\overrightarrow{OC}=3\overrightarrow c$,点P(x,4)在线段AC的垂直平分线上,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.为了估计某人的射击技术情况,在他的训练记录中抽取50次检验,他的命中环数如下:10,5,5,8,7,8,6,9,7,8,6,6,5,6,7,8,10,9,7,9,8,7,6,5,9,9,8,8,5,8,6,7,6,9,6,8,8,8,6,7,6,8,107,10,8,7,7,9,5
(1)列出频率分布表
(2)画出频率分布的直方图.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知椭圆C1:$\frac{x^2}{a_1^2}+\frac{y^2}{b_1^2}=1({a_1}>{b_1}>0)$,双曲线C2:$\frac{x^2}{a_1^2}-\frac{y^2}{b_1^2}=1({a_2}>0,{b_2}>0)$,以C1的短轴为一条最长对角线的正六边形与x轴正半轴交于点M,F为椭圆右焦点,A为椭圆右顶点,B为直线$x=\frac{a_1^2}{c_1}$与x轴的交点,且满足|OM|是|OA|与|OF|的等差中项,现将坐标平面沿y轴折起,当所成二面角为60°时,点A,B在另一半平面内的射影恰为C2的左顶点与左焦点,则C2的离心率为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.一桥拱的形状为抛物线,该抛物线拱的高为h,宽为b,此抛物线拱的面积为S,若b=3h,则S等于(  )
A.h2B.2h2C.$\frac{3}{2}$h2D.$\frac{7}{4}$h2

查看答案和解析>>

同步练习册答案