精英家教网 > 高中数学 > 题目详情
5.一桥拱的形状为抛物线,该抛物线拱的高为h,宽为b,此抛物线拱的面积为S,若b=3h,则S等于(  )
A.h2B.2h2C.$\frac{3}{2}$h2D.$\frac{7}{4}$h2

分析 建立坐标系,设抛物线方程为y=ax2(a<0),将($\frac{3h}{2}$,-h)代入可得a=-$\frac{4}{9h}$,该抛物线拱的面积为h×3h+$(-2{∫}_{0}^{\frac{3h}{2}}a{x}^{2}dx)$,即可得出结论.

解答 解:由题意,建立如图所示的坐标系,
设抛物线方程为y=ax2(a<0),则
将($\frac{3h}{2}$,-h)代入可得a=-$\frac{4}{9h}$,
∴该抛物线拱的面积为h×3h+$(-2{∫}_{0}^{\frac{3h}{2}}a{x}^{2}dx)$
=$3{h}^{2}-2×\frac{4}{9h}×\frac{1}{3}{x}^{3}{|}_{0}^{\frac{3h}{2}}$=2h2
故选B.

点评 解决该试题的关键是利用定积分表示出抛物线拱的面积,然后借助于定积分得到结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知a=log23,b=${log_{\frac{1}{2}}}3$,c=3${\;}^{\frac{1}{2}}$,则(  )
A.c>b>aB.c>a>bC.a>b>cD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知p:实数x满足x2-4ax+3a2<0(a>0),q:实数x满足|x-3|>1,若p是q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的前n项和为Sn,且Sn=2an-2(n∈N*).
(1)求{an}的通项公式;
(2)设${b_{n+1}}=2{b_n}-{2^{n+1}}$,b1=8,Tn是数列{bn}的前n项和,求正整数k,使得对任意n∈N*均有Tk≥Tn恒成立;
(3)设${c_n}=\frac{{{a_{\;n\;+\;1}}}}{{(1+{a_n})(1+{a_{\;n\;+\;1}})}}$,Rn是数列{cn}的前n项和,若对任意n∈N*均有Rn<λ恒成立,求λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若复数z满足(3-4i+z)i=2+i,则z=(  )
A.4+6iB.4+2iC.-4-2iD.-2+2i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)求($\frac{1}{2}$-x)5的展开式中x3的系数及展开式中各项系数之和;
(2)从0,2,3,4,5,6这6个数中任取4个组成一个无重复数字的四位数,求满足条件的四位数的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,正方形ABCD中,P,Q分别是边BC,CD的中点,若$\overrightarrow{AC}$=x$\overrightarrow{AP}$+y$\overrightarrow{BQ}$,则xy=(  )
A.2B.$\frac{8}{3}$C.$\frac{6}{5}$D.$\frac{12}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)=\frac{1}{3}{x^3}-{x^2}-3x$有两个极值点x1,x2,且x1<x2,记点M(x1,f(x1)),N(x2,f(x2)).
(Ⅰ)求直线MN的方程;
(Ⅱ)证明:线段MN与曲线y=f(x)有且只有一个异于M、N的公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知△ABC是边长为4的等边三角形,D、P是△ABC内部两点,且满足$\overrightarrow{AD}=\frac{1}{4}(\overrightarrow{AB}+\overrightarrow{AC})$,$\overrightarrow{AP}=\overrightarrow{AD}+\frac{1}{8}\overrightarrow{BC}$,则△ADP的面积为(  )
A.$\frac{{\sqrt{3}}}{4}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\sqrt{3}$

查看答案和解析>>

同步练习册答案