精英家教网 > 高中数学 > 题目详情
5.如图,正方形ABCD的边长为1,E是CD边外的一点,满足:CE∥BD,BE=BD,则CE=$\frac{\sqrt{6}-\sqrt{2}}{2}$.

分析 由正方形ABCD,得到三角形DCB为等腰直角三角形,且两直角边为1,根据勾股定理求出BD的长,又BE=BD,从而得到BE的长,设CF=x,故BF=BC-CF=1-x,在直角三角形BCF中,由BC=1,CF=x,根据勾股定理表示出BF,再由BE-BF表示出EF,由EC与BD平行,根据两直线平行内错角相等,得出两对内错角相等,利用两对角对应相等的两三角形相似可得三角形BDF与三角形ECF相似,根据相似得比例,把各边的长代入列出关于x的方程,求出方程的解得到x的值,进而求出相似比,可得出CE的长.

解答 解:$BE=BD=\sqrt{2}$,设CF=x,则$BF=\sqrt{1+{x^2}}$,DF=1-x,
EF=$\sqrt{2}$-$\sqrt{1{+x}^{2}}$,由△BDF~△ECF,得$\frac{EF}{BF}=\frac{CF}{DF}=\frac{EC}{BD}$,
即有$\frac{{\sqrt{2}-\sqrt{1+{x^2}}}}{{\sqrt{1+{x^2}}}}=\frac{x}{1-x}$,所以$\frac{{\sqrt{2}-\sqrt{1+{x^2}}}}{{\sqrt{2}}}=\frac{x}{1}$,$\frac{{\sqrt{1+{x^2}}}}{{\sqrt{2}}}=\frac{1-x}{1}$,则$x=2-\sqrt{3}$,
再由$\frac{EC}{BD}=\frac{CF}{DF}$,即$\frac{EC}{{\sqrt{2}}}=\frac{x}{1-x}=\frac{{2-\sqrt{3}}}{{\sqrt{3}-1}}=\frac{{\sqrt{3}-1}}{2}$,所以$EC=\frac{{\sqrt{6}-\sqrt{2}}}{2}$,
故答案为:$\frac{\sqrt{6}-\sqrt{2}}{2}$

点评 此题考查了相似三角形的判定与性质,正方形的性质,以及勾股定理的应用,相似三角形是中考的必考内容,证明三角形的相似可以得到其对应边成比例,利用比例式建立已知边与未知边的联系,借助方程的思想来解决问题,利用线段的加减及勾股定理表示出相似三角形的对应边是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.设a、b∈(0,+∞),则“ab<ba”是“a>b>e”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若方程$\frac{1}{2}$kx-lnx=0有两个实数根,则k取值范围是(0,$\frac{2}{e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.证明不等式:$\sqrt{6}+\sqrt{7}>2\sqrt{2}+\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设a,b,c的平均数为M,a与b的平均数为N,N与c的平均数为P,若a>b>c,则M与P的大小关系是(  )
A.M=PB.M>PC.M<PD.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,将OA=6,AB=4的矩形OABC放置在平面直角坐标系中,动点M,N以每秒1个单位的速度分别从点A,C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP.
(1)点B的坐标为(6,4);用含t的式子表示点P的坐标为($t,\frac{2}{3}t$);
(2)记△OMP的面积为S,求S与t的函数关系式(0<t<6);并求t为何值时,S有最大值?
(3)试探究:当S有最大值时,在y轴上是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC面积的$\frac{1}{3}$?若存在,求出点T的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知方程x2+bx+c=0有两个不等的实根x1,x2,设C={x1,x2},A={1,3,5,7,9},B={1,4,7,10},若A∩C=∅,C∩B=C,试求b、c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=sin(2x-$\frac{3π}{4}$)
(1)画出函数y=f(x)在区间[0,π]上的图象.
(2)求函数f(x)=sin(2x-$\frac{3π}{4}$)的周期、对称轴、对称中心,单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}中,a1=1,a2=a,且an+1=k(an+an+2)对任意正整数都成立,数列{an}的前n项和为Sn
(1)若k=$\frac{1}{2}$且S2017=2017a,求a
(2)是否存在实数k,使数列{an}是公比不为1的等比数列,且对任意相邻三项am,am+1,am+2按某顺序排列后成等差数列?若存在,求出所有的k值;若不存在,请说明理由;
(3)若k=-$\frac{1}{2}$,求Sn

查看答案和解析>>

同步练习册答案