精英家教网 > 高中数学 > 题目详情

【题目】已知函数).

(1)讨论函数的单调性;

(2)当时,,求k的取值范围.

【答案】(1)详见解析(2)

【解析】

(1)将函数求导并化简,对分成两种情况,讨论函数的单调性.(2)原不等式即),当时,上述不等式显然成立.当时,将不等式变为,构造函数,利用导数研究函数的单调性,由此求得的取值范围.

解:(1)

①若,当时,上单调递增;

时,上单调递减.

②若,当时,上单调递减;

时,上单调递增.

∴当时,上单调递增,在上单调递减;

时,上单调递减,在上单调递增.

(2)),

时,上不等式成立,满足题设条件;

时,,等价于

,则

),则

上单调递减,得

①当,即时,得

上单调递减,得,满足题设条件;

②当,即时,,而

,又单调递减,

∴当,得

上单调递增,得,不满足题设条件;

综上所述,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,,且PC=BC=2AD=2CD=2.

(1)平面

(2)已知点在线段上,且,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出以下四个说法:

①回归直线可以不过样本的中心点;

②在刻画回归模型的拟合效果时,相关指数的值越大,说明拟合的效果越好;

③在回归直线方程中,当解释变量x每增加一个单位时,预报变量平均增加0.2个单位;

④对分类变量XY,若它们的随机变量的观测值k越小,则判断XY有关系的把握程度越大.

其中正确的说法是(

A.①④B.②③C.①③D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019923日,在市举办的2019年中国农民丰收节“新电商与农业科技创新”论坛上,来自政府相关部门的领导及11所中国高校的专家学者以“农业科技创新与乡村振兴”、“新农人与脱贫攻坚”为核心议题各抒己见,农产品方面的科技创新越来越成为21世纪大国崛起的一项重大突破.科学家对某农产品每日平均增重量(单位:)与每日营养液注射量(单位:)之间的关系统计出表1一组数据:

1

(单位:

1

2

3

4

5

(单位:

2

3.5

5

6.6

8.4

1)根据表1和表2的相关统计值求关于的线性回归方程

2)计算拟合指数的值,并说明线性回归模型的拟合效果(的值在.98以上说明拟合程度好);

3)若某日该农产品的营养液注释量为,预测该日这种农产品的平均增长重量(结果精确到0.1.

附:①

2

92.4

55

25

0.04

②对于一组数据,…,,其回归线的斜率和截距的最小二乘估计分别为:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地有三家工厂,分别位于矩形ABCD的顶点AB,及CD的中点P处,已知km,,为了处理三家工厂的污水,现要在矩形ABCD的区域上(含边界),且AB与等距离的一点O处建造一个污水处理厂,并铺设排污管道AOBOOP,设排污管道的总长为ykm

I)按下列要求写出函数关系式:

,将表示成的函数关系式;

,将表示成的函数关系式.

)请你选用(I)中的一个函数关系式,确定污水处理厂的位置,使三条排水管道总长度最短.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的参数方程为t为参数),以原点O为极点,x轴的非负半轴为极轴建立极坐标系,过极点的两射线相互垂直,与曲线C分别相交于AB两点(不同于点O),且的倾斜角为锐角.

(1)求曲线C和射线的极坐标方程;

(2)求△OAB的面积的最小值,并求此时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调递减区间;

(2)求实数的值,使得是函数唯一的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若关于的方程恰有两个不相等的实数根, 则实数的取值范围是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的个数是( )

①设某大学的女生体重与身高具有线性相关关系,根据一组样本数据,用最小二乘法建立的线性回归方程为 ,则若该大学某女生身高增加,则其体重约增加

②关于的方程的两根可分别作为椭圆和双曲线的离心率;

③过定圆上一定点作圆的动弦为原点,若,则动点的轨迹为椭圆;

④已知是椭圆的左焦点,设动点在椭圆上,若直线的斜率大于,则直线为原点)的斜率的取值范围是.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案