精英家教网 > 高中数学 > 题目详情
2.已知数列|an|满足a1=1,$\sqrt{n}{a}_{n+1}$=$\sqrt{n+1}$an,n∈N*
(1)求数列{an}的通项公式:
(2)设bn=$\frac{1}{{a}_{n}+{a}_{n+1}}$,n∈N*,数列|bn|的前n项和为Sn.求证:Sn<$\sqrt{n}$.

分析 (1)由已知得$\frac{{a}_{n+1}}{{a}_{n}}=\frac{\sqrt{n+1}}{\sqrt{n}}$,∴$\frac{{a}_{n}}{{a}_{n-1}}=\frac{\sqrt{n}}{\sqrt{n-1}}$,$\frac{{a}_{n-1}}{{a}_{n-2}}=\frac{\sqrt{n-1}}{\sqrt{n-2}}$,…$\frac{{a}_{2}}{{a}_{1}}=\frac{\sqrt{2}}{1}$,将以上式子相乘得到an
(2)求出bn,使用拆项法求出Sn,利用做差法比较大小.

解答 解:(1)∵$\sqrt{n}{a}_{n+1}$=$\sqrt{n+1}$an,∴$\frac{{a}_{n+1}}{{a}_{n}}=\frac{\sqrt{n+1}}{\sqrt{n}}$,∴$\frac{{a}_{n}}{{a}_{n-1}}=\frac{\sqrt{n}}{\sqrt{n-1}}$,$\frac{{a}_{n-1}}{{a}_{n-2}}=\frac{\sqrt{n-1}}{\sqrt{n-2}}$,$\frac{{a}_{n-2}}{{a}_{n-3}}$=$\frac{\sqrt{n-2}}{\sqrt{n-3}}$…$\frac{{a}_{2}}{{a}_{1}}=\frac{\sqrt{2}}{1}$,
∴$\frac{{a}_{n}}{{a}_{1}}$=$\frac{\sqrt{n}}{\sqrt{n-1}}$×$\frac{\sqrt{n-1}}{\sqrt{n-2}}$×$\frac{\sqrt{n-2}}{\sqrt{n-3}}$×…×$\frac{\sqrt{2}}{1}$=$\sqrt{n}$,
∴an=$\sqrt{n}$a1=$\sqrt{n}$.
(2)bn=$\frac{1}{{a}_{n}+{a}_{n+1}}$=$\frac{1}{\sqrt{n}+\sqrt{n+1}}$=$\sqrt{n+1}$-$\sqrt{n}$.
∴Sn=$\sqrt{2}-1$+$\sqrt{3}-\sqrt{2}$+$\sqrt{4}$-$\sqrt{3}$+…+$\sqrt{n+1}-\sqrt{n}$=$\sqrt{n+1}$-1.
∴Sn2-n=2-2$\sqrt{n+1}$<0,∴Sn2<n,即Sn<$\sqrt{n}$.

点评 本题考查了数列的递推公式,通项公式,数列求和,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.将函数$y=2sin(ωx+\frac{π}{3})(ω>0)$的图象分别向左、向右各平移$\frac{π}{3}$个单位后,所得的两个图象的对称轴重合,则ω的最小值为(  )
A.3B.$\frac{4}{3}$C.6D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知各项均不为零的数列{an}满足:a1=a2=1,an+2an=p•an+12(其中p为非零常数,n∈N*).
(1)求数列{an}的通项公式;
(2)令bn=$\frac{n{a}_{n+2}}{{a}_{n}}$,Sn为数列{bn}的前n项和,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在区间[0,2π]上随机取一个数x,则事件“cosx≥$\frac{1}{2}$”发生的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{11}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在空间中,以AB为公共边的两正方形ABCD,ABEF的边长皆为4,已知$\overrightarrow{AD}$•$\overrightarrow{AF}$=2,则$\overrightarrow{AC}$•$\overrightarrow{AE}$=(  )
A.18B.14C.30D.34

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若存在a∈R,使关于x的不等式x|x-a|<m+1在(0,1]上恒成立,则实数m的取值范围为(  )
A.(2-2$\sqrt{2}$,2+2$\sqrt{2}$)B.(-1,+∞)C.(2-2$\sqrt{2}$,+∞)D.(-1,2+2$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设全集为R,集合A={x|1≤3x<9},B={x|log2x≥0}
(Ⅰ)求A∩B
(Ⅱ)若集合C={x|x+a>0},满足B∩C=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.有两件事和四个图象,两件事为:①我离开家不久,发现自己把作业本忘在家里了,于是返回家找到作业本再上学;②我出发后,心情轻松,缓缓前行,后来为了赶时间开始加速,四个图象如下:

与事件①,②对应的图象分别为(  )
A.a,bB.a,cC.d,bD.d,c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知x,y∈R,向量$\overrightarrow{a}$,$\overrightarrow{b}$不共线,若(x+y-2)$\overrightarrow{a}$+(x-y+3)$\overrightarrow{b}$=0,则x=$-\frac{1}{2}$,y=$\frac{5}{2}$.

查看答案和解析>>

同步练习册答案