分析 (1)由三角函数中的恒等变换化简函数解析式可得f(x)=$\sqrt{3}$sin(2x+$\frac{π}{3}$),由此得到函数增区间.
(2)由题意可得sinα=$\frac{3}{5}$,由α∈($\frac{π}{2}$,π),可得cosα=-$\frac{4}{5}$,根据二倍角公式可得答案.
解答 解:(1)∵f(x)=sin(2x+$\frac{π}{6}$)+cos2x.
=$\frac{\sqrt{3}}{2}$sin2x+$\frac{3}{2}$cos2x.
=$\sqrt{3}$sin(2x+$\frac{π}{3}$),
∴当2kπ-$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,得:kπ-$\frac{5π}{12}$≤x≤kπ+$\frac{π}{12}$(k∈Z),
∴函数f(x)的单调递增区间是[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$](k∈Z).
(2)∵f($\frac{α}{2}$-$\frac{π}{6}$)=$\frac{3\sqrt{3}}{5}$,
∴sinα=$\frac{3}{5}$,∵α∈($\frac{π}{2}$,π),
∴cosα=-$\frac{4}{5}$,
∴f(α)=$\frac{\sqrt{3}}{2}$sin2α+$\frac{3}{2}$cos2α=$\sqrt{3}$sinαcosα+$\frac{3}{2}$(2cos2α-1)
=$\frac{71-32\sqrt{3}}{50}$.
点评 本题考查三角函数中的恒等变换、三角函数的图象与性质和二倍角公式.
科目:高中数学 来源: 题型:选择题
| A. | ¬p | B. | ¬q | C. | (¬p)∧q | D. | p∨(¬q) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,4] | B. | (0,52] | C. | [52,+∞) | D. | [36,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {2,3,4,5} | B. | {2,3,4} | C. | {3,4,5} | D. | {2,3} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|1<x≤2} | B. | {x|1<x<2} | C. | {x|x>2} | D. | {x|x≤2} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com