精英家教网 > 高中数学 > 题目详情
3.满足等式$|\begin{array}{l}{z}&{-i}\\{1-i}&{1+i}\end{array}|$=0的复数z为-1.

分析 利用行列式的性质、复数的运算法则即可得出.

解答 解:∵等式$|\begin{array}{l}{z}&{-i}\\{1-i}&{1+i}\end{array}|$=0,∴z(1+i)+i(1-i)=0,
∴z(1+i)(1-i)+i(1-i)(1-i)=0,
∴2z+2=0,
解得z=-1.
故答案为:-1.

点评 本题考查了行列式的性质、复数的运算法则,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.下列各组函数中,表示同一函数的是(  )
A.y=x+1与y=$\frac{{x}^{2}+x}{x}$B.f(x)=$\frac{{x}^{2}}{(\sqrt{x})^{2}}$与g(x)=x
C.$f(x)=|x|与g(x)=\root{n}{x^n}$D.$f(x)=x与g(t)={log_a}{a^t}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,侧面PAD同时垂直侧面PAB与侧面PDC.若PA=AB=AD=$\frac{{\sqrt{3}}}{3}$PB,则$\frac{BC}{AD}$=$\frac{3}{2}$,直线PC与底面ABCD所成角的正切值为$\frac{\sqrt{6}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x2+mx+n(m,n∈R),f(0)=f(1),且方程f(x)=x有两个相等的实数根.
(1)求函数f(x)的解析式;
(2)当x∈(0,2)时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若x>0,则函数y=x+$\frac{1}{2x+1}$的最小值为$\sqrt{2}-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若X是一个非空集合,M是一个以X的某些子集为元素的集合,且满足:
(1)X∈M,Φ∈M;
(2)对于X的任意子集A,B,当A∈M,B∈M时,A∪B∈M,A∩B∈M.则称M是集合X的一个“M-集合类”.
例如:M={Φ,{b},{c},{b,c},{a,b,c}}是集合X={a,b,c}的一个“M-集合类”.已知集合X={a,b,c},则所有含{b,c}的“M-集合类”的个数为10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知f(x)=ax3+bx+2014x2017-4其中a,b为常数,若f(-2)=2,则f(2)=(  )
A.-2B.-4C.-6D.-10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知△ABC,若存在△A1B1C1,满足$\frac{cosA}{sin{A}_{1}}$=$\frac{cosB}{sin{B}_{1}}$=$\frac{cosC}{sin{C}_{1}}$=1,则称△A1B1C1是△ABC的一个“友好”三角形.在满足下述条件的三角形中,存在“友好”三角形的是②:(请写出符合要求的条件的序号)
①A=90°,B=60°,C=30°;②A=75°,B=60°,C=45°;③A=75°,B=75°,C=30°;④A=75°,B=65°,C=45°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.公比为2的正项等比数列{an},a3a11=16,则a5=(  )
A.1B.2C.4D.8

查看答案和解析>>

同步练习册答案