分析 方程即 a(x+2)+(-x-y+1)=0,由$\left\{\begin{array}{l}{x+2=0}\\{-x-y-1=0}\end{array}\right.$解得定点坐标.
解答 解:方程(a-1)x-y+2a-1=0(a∈R)
即 a(x+2)+(-x-y-1)=0,
由$\left\{\begin{array}{l}{x+2=0}\\{-x-y-1=0}\end{array}\right.$,解得:定点坐标为(-2,1),
故答案为 (-2,1).
点评 本题考查直线过定点问题,利用a(x+2)+(-x-y-1)=0经过x+2=0和-x-y-1=0的交点是解题的关键,本题是一道基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3\sqrt{2}}{2}$ | B. | $\sqrt{5}$ | C. | $\frac{9}{2}$ | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-2]∪{1} | B. | (-∞,-2]∪[1,2] | C. | [1,+∞) | D. | [-2,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x>0,y>0 | B. | x>0,y<0 | C. | x<0,y>0 | D. | x<0,y<0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com