精英家教网 > 高中数学 > 题目详情
20.对于数列{an},若?m,n∈N*(m≠n),都有$\frac{{{a_n}-{a_m}}}{n-m}≥t({t为常数})$成立,则称数列{an}具有性质P(t).若数列{an}的通项公式为${a_n}={n^2}-\frac{a}{n}$,且具有性质P(10),则实数a的取值范围是[36,+∞).

分析 由题意知$\frac{{{a_n}-{a_m}}}{n-m}=\frac{{({{n^2}-\frac{a}{n}})-({{m^2}-\frac{a}{m}})}}{n-m}≥10$恒成立,从而可得数列$\left\{{{n^2}-10n-\frac{a}{n}}\right\}$为单调递增数列,从而可得${({n+1})^2}-({n+1})-\frac{a}{n+1}-({{n^2}-10n-\frac{a}{n}})≥0$恒成立,即a≥-n(n+1)(2n-9),从而解得.

解答 解:∵数列通项公式${a_n}={n^2}-\frac{a}{n}$且数列具有性质P(10),
∴$\frac{{{a_n}-{a_m}}}{n-m}=\frac{{({{n^2}-\frac{a}{n}})-({{m^2}-\frac{a}{m}})}}{n-m}≥10$,
∴$\frac{{({{n^2}-\frac{a}{n}})-({{m^2}-\frac{a}{m}})}}{n-m}-10=\frac{{({{n^2}-10n-\frac{a}{n}})-({{m^2}-10m-\frac{a}{m}})}}{n-m}≥0$恒成立,
∴数列$\left\{{{n^2}-10n-\frac{a}{n}}\right\}$为单调递增数列,
∴${({n+1})^2}-({n+1})-\frac{a}{n+1}-({{n^2}-10n-\frac{a}{n}})≥0$恒成立,
即a≥-n(n+1)(2n-9),
由数轴标根法作图如下,

故最大值在n=1,2,3或4上取得,
当n=1时,-n(n+1)(2n-9)=14,
当n=2时,-n(n+1)(2n-9)=30,
当n=3时,-n(n+1)(2n-9)=36,
当n=4时,-n(n+1)(2n-9)=20,
故a≥36.
故答案为:[36,+∞).

点评 本题考查了恒成立问题,恒成立问题一般转化为求最值,构造新的数列形式后要利用递推关系建立不等式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.执行如图所示的程序框图,则输出的实数m的值为(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设集合A={x|-x2+2x+3>0},B={x|$\frac{1}{4}$<($\frac{1}{2}$)x<1},则A∩B=(  )
A.(0,3)B.(0,2)C.(1,3)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.无论a取何值时,方程(a-1)x-y+2a-1=0表示的直线所过的定点是(-2,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π),函数f(x)的图象如图所示,则f(2016π)的值为(  )
A.$\sqrt{2}$B.-$\sqrt{2}$C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,AE⊥正方形BCDE所在的平面,点F,G分别是AB和AC的中点.
(Ⅰ)求证:FG∥平面ADE;
(Ⅱ)求证:平面ABD⊥平面ACE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的前n项和为Sn,且Sn=2an-1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记bn=log2an,求数列{anbn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若数列{an}满足an-(-1)nan-1=n(n≥2,n∈N*),Sn是{an}的前n项和,则S40=440.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若不等式$\frac{1}{3}$<x<$\frac{1}{2}$的必要不充分条件是|x-m|<1,则实数m的取值范围是(  )
A.[-$\frac{4}{3}$,$\frac{1}{2}$]B.[-$\frac{1}{2}$,$\frac{4}{3}$]C.(-∞,$\frac{1}{2}$)D.($\frac{4}{3}$,+∞)

查看答案和解析>>

同步练习册答案