精英家教网 > 高中数学 > 题目详情
11.设集合A={x|-x2+2x+3>0},B={x|$\frac{1}{4}$<($\frac{1}{2}$)x<1},则A∩B=(  )
A.(0,3)B.(0,2)C.(1,3)D.(1,+∞)

分析 分别求出A与B中不等式的解集确定出A与B,找出两集合的交集即可.

解答 解:由A中不等式变形得:(x-3)(x+1)<0,
解得:-1<x<3,即A=(-1,3),
由B中不等式变形得:$\frac{1}{4}$=($\frac{1}{2}$)2<($\frac{1}{2}$)x<1=($\frac{1}{2}$)0
解得:0<x<2,即B=(0,2),
则A∩B=(0,2),
故选:B.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.执行右面的程序框图,如果输入的N=3,那么输出的S=(  )
A.1B.$\frac{3}{2}$C.$\frac{5}{3}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在(x2-$\frac{2}{x}$)7的二项展开式中,x5项的系数为-280.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.执行如图所示的程序框图,则输出的n为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,AB=AC,M为AC的中点,BM=$\sqrt{3}$,则△ABC面积的最大值是(  )
A.$\sqrt{2}$B.2C.$\frac{3}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.曲线y=xlnx在点(1,0)处的切线的倾斜角为(  )
A.-135°B.45°C.-45°D.135°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=(ax+b)ex,g(x)=-x2+cx+d.若函数f(x)和g(x)的图象都过点P(0,1),且在点P处有相同的切线y=2x+1.
(I)求a,b,c,d的值;
(Ⅱ)当x∈[0,+∞)时,判断函数h(x)=f(x)-g(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.对于数列{an},若?m,n∈N*(m≠n),都有$\frac{{{a_n}-{a_m}}}{n-m}≥t({t为常数})$成立,则称数列{an}具有性质P(t).若数列{an}的通项公式为${a_n}={n^2}-\frac{a}{n}$,且具有性质P(10),则实数a的取值范围是[36,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,内角A,B,C所对的边分别为a,b,c,若a=1,c=2(b-cosC),则△ABC周长的取值范围是(  )
A.(1,3]B.[2,4]C.(2,3]D.[3,5]

查看答案和解析>>

同步练习册答案