| A. | (1,3] | B. | [2,4] | C. | (2,3] | D. | [3,5] |
分析 由余弦定理求得cosC,代入已知等式可得(b+c)2-1=3bc,利用基本不等式求得b+c≤2,故a+b+c≤3.再由三角形任意两边之和大于第三边求得a+b+c>2,由此求得△ABC的周长的取值范围.
解答 解:△ABC中,由余弦定理可得2cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{ab}$,
∵a=1,2cosC+c=2b,
∴$\frac{1+{b}^{2}-{c}^{2}}{b}$+c=2b,化简可得(b+c)2-1=3bc.
∵bc≤($\frac{b+c}{2}$)2,
∴(b+c)2-1≤3×($\frac{b+c}{2}$)2,解得b+c≤2(当且仅当b=c时,取等号).
故a+b+c≤3.
再由任意两边之和大于第三边可得 b+c>a=1,故有 a+b+c>2,
故△ABC的周长的取值范围是(2,3],
故选:C.
点评 本题主要考查余弦定理、基本不等式的应用,三角形任意两边之和大于第三边,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (0,3) | B. | (0,2) | C. | (1,3) | D. | (1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{4}{3}$,$\frac{1}{2}$] | B. | [-$\frac{1}{2}$,$\frac{4}{3}$] | C. | (-∞,$\frac{1}{2}$) | D. | ($\frac{4}{3}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com