精英家教网 > 高中数学 > 题目详情
10.若不等式$\frac{1}{3}$<x<$\frac{1}{2}$的必要不充分条件是|x-m|<1,则实数m的取值范围是(  )
A.[-$\frac{4}{3}$,$\frac{1}{2}$]B.[-$\frac{1}{2}$,$\frac{4}{3}$]C.(-∞,$\frac{1}{2}$)D.($\frac{4}{3}$,+∞)

分析 |x-m|<1,解得m-1<x<m+1.不等式$\frac{1}{3}$<x<$\frac{1}{2}$的必要不充分条件是|x-m|<1,可得$\left\{\begin{array}{l}{m-1≤\frac{1}{3}}\\{\frac{1}{2}≤m+1}\end{array}\right.$,且等号不能同时成立,解出即可得出.

解答 解:|x-m|<1,解得m-1<x<m+1.
∵不等式$\frac{1}{3}$<x<$\frac{1}{2}$的必要不充分条件是|x-m|<1,
∴$\left\{\begin{array}{l}{m-1≤\frac{1}{3}}\\{\frac{1}{2}≤m+1}\end{array}\right.$,且等号不能同时成立,
解得:$-\frac{1}{2}≤m≤\frac{4}{3}$,
故选:B.

点评 本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.对于数列{an},若?m,n∈N*(m≠n),都有$\frac{{{a_n}-{a_m}}}{n-m}≥t({t为常数})$成立,则称数列{an}具有性质P(t).若数列{an}的通项公式为${a_n}={n^2}-\frac{a}{n}$,且具有性质P(10),则实数a的取值范围是[36,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,内角A,B,C所对的边分别为a,b,c,若a=1,c=2(b-cosC),则△ABC周长的取值范围是(  )
A.(1,3]B.[2,4]C.(2,3]D.[3,5]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$\overrightarrow a=({1,-3})$,$\overrightarrow b=({3,2sinα})$,若$\overrightarrow a⊥\overrightarrow b$,则$cos({\frac{π}{2}+α})$=(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在n元数集S={a1,a2,…an}中,设X(S)=$\frac{{a}_{1}+{a}_{2}+…+{a}_{n}}{n}$,若S的非空子集A满足X(A)=X(S),则称A是集合S的一个“平均子集”,并记数集S的k元“平均子集”的个数为fs(k),已知集合S={1,2,3,4,5,6,7,8,9},T={-4,-3,-2,-1,0,1,2,3,4},则下列说法错误的是(  )
A.fs(4)=fs(5)B.fs(4)=fT(5)C.fs(1)+fs(4)=fT(5)+fT(8)D.fs(2)+fs(3)=fT(4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={x|x=3n+2,n∈N},B={2,3,4,5,6},则集合A∩B的元素个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.垂直于直线y=x+1且与圆x2+y2=4相切于第一象限的直线方程是(  )
A.x+y+2$\sqrt{2}$=0B.x+y+2=0C.x+y-2$\sqrt{2}$=0D.x+y-2=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.根据各已知条件,判断△ABC解的个数,并求解.
(1)a=4$\sqrt{3}$,b=4,A=120°,求B;
(2)a=4$\sqrt{2}$,b=4,A=90°,求B;
(3)a=5,b=$\frac{10\sqrt{3}}{3}$,A=60°,求B;
(4)a=20,b=20,A=45°,求B;
(5)a=28,b=46,A=27°,求B(结果精确到1°).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=sin(ωx+φ)+$\frac{1}{2}$(ω≥0,|φ|<π)的图象与直线y=c($\frac{1}{2}$<c<$\frac{3}{2}$)的三个相邻交点的横坐标为2,6,18,若a=f(lg$\frac{1}{2}$),b=f(lg2),则以下关系式正确的是(  )
A.a+b=0B.a-b=0C.a+b=1D.a-b=1

查看答案和解析>>

同步练习册答案