分析 (I)由中位线定理和平行公理可知FG∥DE,故FG∥平面ADE;
(II)由AE⊥平面BCDE可知AE⊥BD,由正方形性质得EC⊥BD,故而BD⊥平面ACE,从而平面ABD⊥平面ACE.
解答 证明:(I)∵点F,G分别是AB和AC的中点,
∴FG∥BC,又BC∥DE,
∴FG∥DE,∵FG?平面ADE,DE?平面ADE,
∴FG∥平面ADE.
(II)∵AE⊥平面BCDE,BD?平面BCDE,
∴AE⊥BD,
∵四边形BCDE是正方形,
∴EC⊥BD,又AE?平面ACE,CE?平面ACE,AE∩CE=C,
∴BD⊥平面ACE,∵BD?平面ABD,
∴平面ABD⊥平面ACE.
点评 本题考查了线面平行,面面垂直的判定,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-2]∪{1} | B. | (-∞,-2]∪[1,2] | C. | [1,+∞) | D. | [-2,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x>0,y>0 | B. | x>0,y<0 | C. | x<0,y>0 | D. | x<0,y<0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com