精英家教网 > 高中数学 > 题目详情
已知关于x的不等式x2-4
3
xcosθ+2<0与2x2+4xsinθ+1<0的解集,分别是(a,b)和(
1
b
1
a
),且θ∈(
π
2
,π),则θ的值是(  )
A、
5
6
π
B、
2
3
π
C、
3
4
π
D、
7
12
π
考点:其他不等式的解法
专题:不等式的解法及应用
分析:由题意利用韦达定理可得a+b=4
3
cosθ,ab=2,且
1
a
+
1
b
=-2sinθ,
1
ab
=
1
2
.由此求得tanθ的值,再结合θ的范围,求得θ的值.
解答: 解:由题意可得a+b=4
3
cosθ,ab=2,且
1
a
+
1
b
=-2sinθ,
1
ab
=
1
2

4
3
cosθ
2
=-2sinθ,
3
cosθ+sinθ=0,∴tanθ=-
3

再结合θ∈(
π
2
,π),可得θ=
3

故选:B.
点评:本题主要考查韦达定理的应用,同角三角函数的基本关系,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

sin
10π
3
的值是(  )
A、
1
2
B、-
1
2
C、-
3
2
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若(1+2x)5+(a+2x)5=a1x+a2x2+a3x3+a4x4+a5x5,则a+a1+a3+a5=(  )
A、0B、-1C、243D、244

查看答案和解析>>

科目:高中数学 来源: 题型:

桌上放着红桃、黑桃和梅花三种牌,共20张,下列判断正确的是(  )
①桌上至少有一种花色的牌少于6张;
②桌上至少有一种花色的牌多于6张;
③桌上任意两种牌的总数将不超过19张.
A、①②B、①③C、②③D、①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成四面体ABCD,则在四面体ABCD中,下列结论正确的是(  )
A、平面ABD⊥平面ABC
B、平面ADC⊥平面BDC
C、平面ABC⊥平面BDC
D、平面ADC⊥平面ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
ex (x≥0)
-2x(x<0)
,则关于x的方程f[f(x)]+k=0有四个结论:
①存在实数k,使方程没有实根
②存在实数k,使方程恰有1个实根
③存在实数k,使方程恰有2个实根
④存在实数k,使方程恰有3个实根
则正确结论的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A={0,1,2,3,4},B={x|x<2},则A∩B=(  )
A、∅
B、{0,1}
C、{0,1,2}
D、{x|x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:

若曲线f(x,y)=0上两个不同点处的切线重合,则称这条切线为曲线f(x,y)=0的“自公切线”,下列方程:
①x2-y2=1
②x2-|x-1|-y=0
③xcosx-y=0
④|x|-
4-y2
+1=0
其中所对应的曲线中存在“自公切线”的有(  )
A、①②B、②③C、①④D、③④

查看答案和解析>>

科目:高中数学 来源: 题型:

在对人们的休闲方式的一次调查中,其调查了120人,其中女性66人,男性55人,女性中有40人主要的休闲方式是看电视,另25人主要的休闲方式是运动;男性中有20人主要的休闲方式是看电视,另外35人主要的休闲方式是运动.
(Ⅰ)根据以上数据建立一个2×2的列联表;
(Ⅱ)能够以多大的把握认为性别与休闲方式有关系,为什么?
参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d为样本容量.
P(K2)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

同步练习册答案