精英家教网 > 高中数学 > 题目详情
1.设随机变量X~B ( n,p ),且EX=6,DX=3,则P(X=1)的值为(  )
A.$\frac{3}{4}$B.$\frac{1}{16}$C.$\frac{3}{1024}$D.$\frac{1}{256}$

分析 根据随机变量符合二项分布,根据期望值求出n、p的值,写出对应的自变量的概率的计算公式,代入自变量等于1时的值.

解答 解:∵随机变量X~B ( n,p ),且EX=6,DX=3,
∴np=6,np(1-p)=3,
∴n=12,p=0.5
∴P(X=1)=C121(0.5)1(0.5)11=$\frac{3}{1024}$
故选C.

点评 本题考查二项分布,本题解题的关键是写出变量对应的概率的表示式和期望的表示式,根据期望、方差值做出n,p的值,本题是一个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.长方体ABCD-A1B1C1D1中,已知AA1=3,AB=AD=2,棱AD在平面α内,则长方体在平面α内的射影所构成的图形面积的取值范围是$4≤S≤2\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,角A,B,C所对的边分别为a,b,c,且b2+c2=a2+bc.
(1)求角A的大小;
(2)若三角形的面积为$\sqrt{3}$,且b+c=5,求b和c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,若圆x2+y2=a2被直线x-y-$\sqrt{2}$=0截得的弦长为2
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知点A、B为动直线y=k(x-1),k≠0与椭圆C的两个交点,问:在x轴上是否存在定点M,使得$\overrightarrow{MA}$•$\overrightarrow{MB}$为定值?若存在,试求出点M的坐标和定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知△ABC中,a,b,c分别是角A,B,C的对边,a=$\sqrt{2}$,b=$\sqrt{3}$,A=$\frac{π}{4}$,则B=$\frac{π}{3}$或$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在极坐标系中,圆心在($\sqrt{2}$,π)且过极点的圆的方程为(  )
A.ρ=2$\sqrt{2}$cos θB.ρ=-2$\sqrt{2}$cos θC.ρ=2$\sqrt{2}$sin θD.ρ=-2$\sqrt{2}$sin θ

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若关于x的不等式|x+3|-|x-1|>a2-3a的解集不空,则实数a的范围是(  )
A.(-∞,-1)∪(4,+∞)B.(-1,4)C.(-∞,-4)∪(1,+∞)D.(-4,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.有5名同学站成一排照相,则甲与乙相邻的不同排法种数有(  )
A.8B.12C.36D.48

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.结合下面的算法:
第一步,输入x
第二步,判断x是否小于0,若是则输出x+2,结束程序;否则执行第三步
第三步,输出x-1,结束程序;
当输入的x的值分别是-1,0,1时,输出的结果分别为1,-1,0.

查看答案和解析>>

同步练习册答案